scholarly journals Production of High Manganese Steels by Powder Metallurgy Method

1980 ◽  
Vol 44 (12) ◽  
pp. 1341-1349
Author(s):  
Yuji Muramatsu
2019 ◽  
Vol 50 (12) ◽  
pp. 5760-5766 ◽  
Author(s):  
Madhumanti Bhattacharyya ◽  
Yves Brechet ◽  
Gary R. Purdy ◽  
Hatem S. Zurob

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Matías Bordone ◽  
Juan Perez-Ipiña ◽  
Raúl Bolmaro ◽  
Alfredo Artigas ◽  
Alberto Monsalve

This article is focused on the mechanical behavior and its relationship with the microstructural changes observed in two high-manganese steels presenting twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP), namely Steel B and Steel C, respectively. Chemical compositions were similar in manganese, but carbon content of Steel B approximately doubles Steel C, which directly impacted on the stacking fault energy (SFE), microstructure and mechanical response of each alloy. Characterization of as-cast condition by optical microscope revealed a fully austenitic microstructure in Steel B and a mixed microstructure in Steel C consisting of austenite grains and thermal-induced (εt) martensite platelets. Same phases were observed after the thermo-mechanical treatment and tensile tests, corroborated by means of X-Ray Diffraction (XRD), which confirms no phase transformation in Steel B and TRIP effect in Steel C, due to the strain-induced γFCC→εHCP transformation that results in an increase in the ε-martensite volume fraction. Higher values of ultimate tensile strength, yield stress, ductility and impact toughness were obtained for Steel B. Significant microstructural changes were revealed in tensile specimens as a consequence of the operating hardening mechanisms. Scanning Electron Microscopy (SEM) observations on the tensile and impact test specimens showed differences in fracture micro-mechanisms.


2018 ◽  
Vol 63 (2) ◽  
pp. 491-499
Author(s):  
Benjamin Wittig ◽  
Manuela Zinke ◽  
Sven Jüttner ◽  
Daniel Keil

Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 726 ◽  
Author(s):  
Christian Haase ◽  
Luis Antonio Barrales-Mora

Arguably, steels are the most important structural material, even to this day. Numerous design concepts have been developed to create and/or tailor new steels suited to the most varied applications. High-manganese steels (HMnS) stand out for their excellent mechanical properties and their capacity to make use of a variety of physical mechanisms to tailor their microstructure, and thus their properties. With this in mind, in this contribution, we explore the possibility of extending the alloy design concepts that haven been used successfully in HMnS to the recently introduced high-entropy alloys (HEA). To this aim, one HMnS steel and the classical HEA Cantor alloy were subjected to cold rolling and heat treatment. The evolution of the microstructure and texture during the processing of the alloys and the resulting properties were characterized and studied. Based on these results, the physical mechanisms active in the investigated HMnS and HEA were identified and discussed. The results evidenced a substantial transferability of the design concepts and more importantly, they hint at a larger potential for microstructure and property tailoring in the HEA.


Sign in / Sign up

Export Citation Format

Share Document