scholarly journals Issues and Perspectives from Standpoints of High Density, High Performance and High Reliability in Multi-Level Interconnection Technology for Future's ULSI's.

Materia Japan ◽  
1996 ◽  
Vol 35 (4) ◽  
pp. 348-354 ◽  
Author(s):  
Hideki Shibata
2018 ◽  
Author(s):  
Seng Nguon Ting ◽  
Hsien-Ching Lo ◽  
Donald Nedeau ◽  
Aaron Sinnott ◽  
Felix Beaudoin

Abstract With rapid scaling of semiconductor devices, new and more complicated challenges emerge as technology development progresses. In SRAM yield learning vehicles, it is becoming increasingly difficult to differentiate the voltage-sensitive SRAM yield loss from the expected hard bit-cells failures. It can only be accomplished by extensively leveraging yield, layout analysis and fault localization in sub-micron devices. In this paper, we describe the successful debugging of the yield gap observed between the High Density and the High Performance bit-cells. The SRAM yield loss is observed to be strongly modulated by different active sizing between two pull up (PU) bit-cells. Failure analysis focused at the weak point vicinity successfully identified abnormal poly edge profile with systematic High k Dielectric shorts. Tight active space on High Density cells led to limitation of complete trench gap-fill creating void filled with gate material. Thanks to this knowledge, the process was optimized with “Skip Active Atomic Level Oxide Deposition” step improving trench gap-fill margin.


2020 ◽  
Vol 15 ◽  
Author(s):  
Weiwen Zhang ◽  
Long Wang ◽  
Theint Theint Aye ◽  
Juniarto Samsudin ◽  
Yongqing Zhu

Background: Genotype imputation as a service is developed to enable researchers to estimate genotypes on haplotyped data without performing whole genome sequencing. However, genotype imputation is computation intensive and thus it remains a challenge to satisfy the high performance requirement of genome wide association study (GWAS). Objective: In this paper, we propose a high performance computing solution for genotype imputation on supercomputers to enhance its execution performance. Method: We design and implement a multi-level parallelization that includes job level, process level and thread level parallelization, enabled by job scheduling management, message passing interface (MPI) and OpenMP, respectively. It involves job distribution, chunk partition and execution, parallelized iteration for imputation and data concatenation. Due to the design of multi-level parallelization, we can exploit the multi-machine/multi-core architecture to improve the performance of genotype imputation. Results: Experiment results show that our proposed method can outperform the Hadoop-based implementation of genotype imputation. Moreover, we conduct the experiments on supercomputers to evaluate the performance of the proposed method. The evaluation shows that it can significantly shorten the execution time, thus improving the performance for genotype imputation. Conclusion: The proposed multi-level parallelization, when deployed as an imputation as a service, will facilitate bioinformatics researchers in Singapore to conduct genotype imputation and enhance the association study.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sera Kwon ◽  
Min-Jung Kim ◽  
Kwun-Bum Chung

AbstractTiOx-based resistive switching devices have recently attracted attention as a promising candidate for next-generation non-volatile memory devices. A number of studies have attempted to increase the structural density of resistive switching devices. The fabrication of a multi-level switching device is a feasible method for increasing the density of the memory cell. Herein, we attempt to obtain a non-volatile multi-level switching memory device that is highly transparent by embedding SiO2 nanoparticles (NPs) into the TiOx matrix (TiOx@SiO2 NPs). The fully transparent resistive switching device is fabricated with an ITO/TiOx@SiO2 NPs/ITO structure on glass substrate, and it shows transmittance over 95% in the visible range. The TiOx@SiO2 NPs device shows outstanding switching characteristics, such as a high on/off ratio, long retention time, good endurance, and distinguishable multi-level switching. To understand multi-level switching characteristics by adjusting the set voltages, we analyze the switching mechanism in each resistive state. This method represents a promising approach for high-performance non-volatile multi-level memory applications.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 813-826
Author(s):  
Farid Uddin Ahmed ◽  
Zarin Tasnim Sandhie ◽  
Liaquat Ali ◽  
Masud H. Chowdhury

2021 ◽  
Vol 6 (51) ◽  
pp. eaaz5796
Author(s):  
I. D. Sîrbu ◽  
G. Moretti ◽  
G. Bortolotti ◽  
M. Bolignari ◽  
S. Diré ◽  
...  

Future robotic systems will be pervasive technologies operating autonomously in unknown spaces that are shared with humans. Such complex interactions make it compulsory for them to be lightweight, soft, and efficient in a way to guarantee safety, robustness, and long-term operation. Such a set of qualities can be achieved using soft multipurpose systems that combine, integrate, and commute between conventional electromechanical and fluidic drives, as well as harvest energy during inactive actuation phases for increased energy efficiency. Here, we present an electrostatic actuator made of thin films and liquid dielectrics combined with rigid polymeric stiffening elements to form a circular electrostatic bellow muscle (EBM) unit capable of out-of-plane contraction. These units are easy to manufacture and can be arranged in arrays and stacks, which can be used as a contractile artificial muscle, as a pump for fluid-driven soft robots, or as an energy harvester. As an artificial muscle, EBMs of 20 to 40 millimeters in diameter can exert forces of up to 6 newtons, lift loads over a hundred times their own weight, and reach contractions of over 40% with strain rates over 1200% per second, with a bandwidth over 10 hertz. As a pump driver, these EBMs produce flow rates of up to 0.63 liters per minute and maximum pressure head of 6 kilopascals, whereas as generator, they reach a conversion efficiency close to 20%. The compact shape, low cost, simple assembling procedure, high reliability, and large contractions make the EBM a promising technology for high-performance robotic systems.


2016 ◽  
Vol 9 (12) ◽  
pp. 3736-3745 ◽  
Author(s):  
Haihua Wu ◽  
Haobo Li ◽  
Xinfei Zhao ◽  
Qingfei Liu ◽  
Jing Wang ◽  
...  

High-density coordination unsaturated copper(i)–nitrogen embedded in graphene demonstrates a high performance and stability in primary zinc–air batteries with ultralow catalyst loading.


MRS Bulletin ◽  
1995 ◽  
Vol 20 (11) ◽  
pp. 53-56 ◽  
Author(s):  
Kuniko Kikuta

The scaling of integrated-circuit device dimensions in the horizontal direction has caused an increase in aspect ratios of contact holes and vias without a corresponding scaledown in vertical dimensions. Conventional sputtering has become unreliable for handling higher aspect-ratio via/contact holes because of its poor step coverage. Several studies have attempted to overcome this problem by using W-CVD and reflow technology. The W-CVD is used for practical device fabrications. However, this technique has several problems such as poor adhesion to SiO2, poor W surface morphology, greater resistivity than Al, and the need of an etch-back process.Al reflow technology using a conventional DC magnetron sputtering system can simplify device-fabrication processes and achieve high reliability without Al/W interfaces. In particular, the Al reflow technology is profitable for multi-level interconnections in combination with a damascene process by using Al chemical mechanical polishing (CMP). These interconnections are necessary for miniaturized and high-speed devices because they provide lower resistivity than W and simplify fabrication processes, resulting in lower cost.This article describes recent Al reflow sputtering technologies as well as application of via and interconnect metallization.


Sign in / Sign up

Export Citation Format

Share Document