scholarly journals Equal-Channel Angular Pressing and High-Pressure Torsion of Pure Copper: Evolution of Electrical Conductivity and Hardness with Strain

2012 ◽  
Vol 53 (1) ◽  
pp. 123-127 ◽  
Author(s):  
Kaveh Edalati ◽  
Kazutaka Imamura ◽  
Takanobu Kiss ◽  
Zenji Horita
2008 ◽  
Vol 584-586 ◽  
pp. 29-34 ◽  
Author(s):  
Radik R. Mulyukov ◽  
Ayrat A. Nazarov ◽  
Renat M. Imayev

Deformation methods of nanostructuring (DMNs) of materials are proposed to classify into severe plastic deformation (SPD) and mild plastic deformation (MPD) methods according to fundamentally different low- and high-temperature grain refinement mechanisms they exploit. A general analysis of the fundamentals and nanostructuring efficiency of three most developed DMNs, high pressure torsion (HPT), equal-channel angular pressing (ECAP), and multiple isothermal forging (MIF) is done with a particular attention to ECAP and MIF. It is demonstrated that MIF is the most efficient method of DMNs allowing one to obtain the bulkiest nanostructured samples with enhanced mechanical properties.


2008 ◽  
Vol 481-482 ◽  
pp. 119-122 ◽  
Author(s):  
I.Yu. Khmelevskaya ◽  
S.D. Prokoshkin ◽  
I.B. Trubitsyna ◽  
M.N. Belousov ◽  
S.V. Dobatkin ◽  
...  

2005 ◽  
Vol 482 ◽  
pp. 207-210 ◽  
Author(s):  
Jakub Čížek ◽  
Ivan Procházka ◽  
Bohumil Smola ◽  
Ivana Stulíková ◽  
Radomír Kužel ◽  
...  

In the present work, positron annihilation spectroscopy (PAS) is employed for microstructure investigations of various ultra fine grained (UFG) metals (Cu, Ni, Fe) prepared by severe plastic deformation (SPD), namely high-pressure torsion (HPT) and equal channel angular pressing (ECAP). Generally, UFG metals prepared using both the techniques exhibit two kinds of defects introduced by SPD: dislocations and small microvoids. The size of the microvoids is determined from the PAS data. Significantly larger microvoids are found in HPT deformed Fe and Ni compared to HPT deformed Cu. The microstructure of UFG Cu prepared by HPT and ECAP is compared and the spatial distribution of defects in UFG Cu samples is characterized. In addition, the microstructure of a pure UFG Cu prepared by HPT and HPT deformed Cu+Al2O3 nanocomposite (GlidCop) is compared.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 607
Author(s):  
A. I. Alateyah ◽  
Mohamed M. Z. Ahmed ◽  
Yasser Zedan ◽  
H. Abd El-Hafez ◽  
Majed O. Alawad ◽  
...  

The current study presents a detailed investigation for the equal channel angular pressing of pure copper through two regimes. The first was equal channel angular pressing (ECAP) processing at room temperature and the second was ECAP processing at 200 °C for up to 4-passes of route Bc. The grain structure and texture was investigated using electron back scattering diffraction (EBSD) across the whole sample cross-section and also the hardness and the tensile properties. The microstructure obtained after 1-pass at room temperature revealed finer equiaxed grains of about 3.89 µm down to submicrons with a high density of twin compared to the starting material. Additionally, a notable increase in the low angle grain boundaries (LAGBs) density was observed. This microstructure was found to be homogenous through the sample cross section. Further straining up to 2-passes showed a significant reduction of the average grain size to 2.97 µm with observable heterogeneous distribution of grains size. On the other hand, increasing the strain up to 4-passes enhanced the homogeneity of grain size distribution. The texture after 4-passes resembled the simple shear texture with about 7 times random. Conducting the ECAP processing at 200 °C resulted in a severely deformed microstructure with the highest fraction of submicron grains and high density of substructures was also observed. ECAP processing through 4-passes at room temperature experienced a significant increase in both hardness and tensile strength up to 180% and 124%, respectively.


2015 ◽  
Vol 641 ◽  
pp. 286-293
Author(s):  
Beata Leszczyńska-Madej ◽  
Maria W. Richert ◽  
Agnieszka Hotloś ◽  
Jacek Skiba

The present study attempts to apply Equal-Channel Angular Pressing (ECAP) to 99.99% pure copper. ECAP process was realized at room temperature for 4, 8 and 16 passes through route BC using a die having angle of 90°. The microstructure of the samples was investigated by means both light and transmission electron microscopy. Additionally the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. There were some different types of bands in the microstructure after deformation. The shear bands, bands and in the submicron range the microshear bands and microbands are a characteristic feature of the microstructure of copper. Also characteristic was increasing of the number of bands with increasing of deformation and mutually crossing of the bands. The intersection of a bands and microbands leads to the formation of new grains with the large misorientation angle. The measured grain/subgrain size show, that the grain size is maintained at a similar level after each stage of deformation and is equal to d = 0.25 – 0.32 μm.


Sign in / Sign up

Export Citation Format

Share Document