Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion

2008 ◽  
Vol 477 (1-2) ◽  
pp. 366-371 ◽  
Author(s):  
N. Lugo ◽  
N. Llorca ◽  
J.M. Cabrera ◽  
Z. Horita
2008 ◽  
Vol 584-586 ◽  
pp. 29-34 ◽  
Author(s):  
Radik R. Mulyukov ◽  
Ayrat A. Nazarov ◽  
Renat M. Imayev

Deformation methods of nanostructuring (DMNs) of materials are proposed to classify into severe plastic deformation (SPD) and mild plastic deformation (MPD) methods according to fundamentally different low- and high-temperature grain refinement mechanisms they exploit. A general analysis of the fundamentals and nanostructuring efficiency of three most developed DMNs, high pressure torsion (HPT), equal-channel angular pressing (ECAP), and multiple isothermal forging (MIF) is done with a particular attention to ECAP and MIF. It is demonstrated that MIF is the most efficient method of DMNs allowing one to obtain the bulkiest nanostructured samples with enhanced mechanical properties.


2011 ◽  
Vol 682 ◽  
pp. 193-203 ◽  
Author(s):  
Yue Zhang ◽  
Jin Qiang Liu ◽  
Jing Tao Wang ◽  
Zhi Bin Wu ◽  
Fan Liu

In the present work 99.98% commercial pure copper, 99.5% commercial pure nickel and 99.5% commercial pure aluminum were imposed on high strain levels of ~24, ~8 and ~44 by equal channel angular pressing (ECAP) via route Bc, respectively. Microstructures and mechanical properties are investigated by TEM observations, tensile tests and microhardness tests. It shows that grain sizes of pure copper, pure nickel and pure aluminum has been severed refined from several tens of microns into several hundreds of nanometers after ECAP processing, however, microstructure of copper are mainly consisted of equiaxed (sub) grains with illegible grains/ (sub) grains boundaries after processed by ECAP, while it is featured as lamellar boundaries in that of pure nickel and as elongated grains in that of pure aluminum underwent a same strain level of ECAP. Results of mechanical properties show that yield strength and microhardness increase as strain increase up to a max value in copper, and then begin to decrease slightly, while mechanical properties of the other two increase as strain increases in nickel up to a strain level of ~12, and as in aluminum, yield strength and microhardness increase as strain increase in a relative low strain level, and then reach an saturation value.


2012 ◽  
Vol 468-471 ◽  
pp. 2124-2127 ◽  
Author(s):  
Shao Feng Zeng ◽  
Kai Huai Yang ◽  
Wen Zhe Chen

Equal channel angular pressing (ECAP) was applied to a commercial AZ61 magnesium alloy for up to 8 passes at temperatures as low as 473K. Microstructures and mechanical properties of as-received and ECAP deformed samples were investigated. The microstructure was initially not uniform with a “bimodal” grain size distribution but became increasingly homogeneous with further ECAP passes and the average grain size was considerably reduced from over 26 μm to below 5 μm. The ultimate tensile strength (UTS) decreases clearly after one pass, but increases significantly up to two passes, and then continuously slowly decreases up to six passes, and again increases slightly up to eight passes. In contrast, the uniform elongation increased significantly up to 3 passes, followed by considerable decrease up to 8 passes. These observations may be attributed to combined effects of grain refinement and texture development.


2014 ◽  
Vol 81 ◽  
pp. 1523-1528 ◽  
Author(s):  
Maki Ashida ◽  
Peng Chen ◽  
Hisashi Doi ◽  
Yusuke Tsutsumi ◽  
Takao Hanawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document