scholarly journals Feasibility Study on Real-time Observation of Flow Velocity Field using Sparse Processing Particle Image Velocimetry

Author(s):  
Naoki KANDA ◽  
Kumi NAKAI ◽  
Yuji SAITO ◽  
Taku NONOMURA ◽  
Keisuke ASAI
Author(s):  
F. Ioli ◽  
L. Pinto ◽  
D. Passoni ◽  
V. Nova ◽  
M. Detert

Abstract. Traditional flow velocity measurements in natural environments require contact with the fluid and are usually costly, time-consuming and, sometimes, even dangerous. Particle Image Velocimetry allows the flow velocity field to be remotely characterized from the shift of intensity patterns of sub-image areas in at least two video frames with a known time lag. Recently, Airborne Image Velocimetry has enabled the surface velocity field of large-scale water bodies to be determined by applying Particle Image Velocimetry on videos recorded by cameras mounted on unmanned aerial vehicles. This work presents a comparison of three Airborne Image Velocimetry approaches: BASESURV, Fudaa-LSPIV and RIVeR. For the evaluation, two nadiral videos were acquired with a low-cost quadcopter. The first was recorded under low flow and seeded conditions, the second during a flood event. According to the results obtained, BASESURV is an accurate and complete research oriented approach but it is time-consuming and neither a graphical interface nor documentation are yet provided. Fudaa-LSPIV is a well-developed software package, with a user-friendly graphical interface and good documentation. However it lacks some features and the source code is closed. RIVeR may be suitable for real time monitoring thanks to the rectification of velocity vectors only. Overall, all the codes are found to be effective in performing Airborne Image Velocimetry in riverine environments.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Nirmalendu Biswas ◽  
Souvick Chatterjee ◽  
Mithun Das ◽  
Amlan Garai ◽  
Prokash C. Roy ◽  
...  

This work investigates natural convection in an enclosure with localized heating on the bottom wall with a flushed or protruded heat source and cooled on the top and the side walls. Velocity field measurements are done by using 2D particle image velocimetry (PIV) technique. Proper orthogonal decomposition (POD) has been used to create low dimensional approximations of the system for predicting the flow structures. The POD-based analysis reveals the modal structure of the flow field and also allows reconstruction of velocity field at conditions other than those used in PIV study.


Author(s):  
Deb Banerjee ◽  
Rick Dehner ◽  
Ahmet Selamet ◽  
Keith Miazgowicz ◽  
Todd Brewer ◽  
...  

Abstract Understanding the velocity field at the inlet of an automotive turbocharger is critical in order to suppress the instabilities encountered by the compressor, extend its map and improve the impeller design. In the present study, two-dimensional particle image velocimetry experiments are carried out on a turbocharger compressor without any recirculating channel to investigate the planar flow structures on a cross-sectional plane right in front of the inducer at a rotational speed of 80 krpm. The objective of the study is to investigate the flow field in front of a compressor blade passage and quantify the velocity distributions along the blade span for different mass flow rates ranging from choke (77 g/s) to deep surge (13.6 g/s). It is observed that the flow field does not change substantially from choke to about 55 g/s, where flow reversal is known to start at this speed from earlier measurements. While the tangential velocity is less than 8 m/s, the radial velocity increases along the span to 17–20 m/s near the tip at high flow rates (55–77 g/s). As the mass flow rate is reduced below 55 g/s, the radial component starts decreasing and the tangential velocity increases rapidly. From about 5 m/s at 55 g/s, the tangential velocity at the blade tip exceeds 50 m/s at 50 g/s and reaches a maximum of about 135 m/s near surge. These time-averaged distributions are similar for different angular locations in front of the blade passage and do not exhibit any substantial azimuthal variation.


Sign in / Sign up

Export Citation Format

Share Document