scholarly journals Low Muscle Glycogen and Elevated Plasma Free Fatty Acid Modify but Do Not Prevent Exercise-Induced PDH Activation in Human Skeletal Muscle

Diabetes ◽  
2009 ◽  
Vol 59 (1) ◽  
pp. 26-32 ◽  
Author(s):  
K. Kiilerich ◽  
M. Gudmundsson ◽  
J. B. Birk ◽  
C. Lundby ◽  
S. Taudorf ◽  
...  
1980 ◽  
Vol 49 (1) ◽  
pp. 102-106 ◽  
Author(s):  
K. M. Baldwin ◽  
A. M. Hooker ◽  
R. E. Herrick ◽  
L. F. Schrader

This study was undertaken to determine the effects of propylthiouracil-induced thyroid deficiency on a) the capacity of muscle homogenates to oxidize [2-14C]pyruvate and [U-14C]palmitate and b) glycogen depletion during exercise in liver and in fast-oxidative-glycogenolytic (FOG), fast-glycogenolytic (FG), and slow-oxidative (SO) muscle. Relative to the rates for normal rats, oxidation with pyruvate was reduced by 53, 68, and 58%, and palmitate by 40, 50, and 48% in FOG, FG, and SO muscle, respectively (P less than 0.05). Normal rats ran longer than thyroid-deficient rats at 26.7 m/min (87 ± 8 vs. 37 ± 5 min). After 40 min of running (22 m/min), the amount of glycogen consumed in normal FOG, FG, and SO muscle and in liver amounted to only 23, 12, 66, and 52%, respectively, of that for their thyroid-deficient counterparts. Also, normal rats maintained higher plasma free fatty acid levels than thyroid-deficient rats during both rest and exercise (P less than 0.05). These findings suggest that thyroid deficiency causes a reduced potential for FFA utilization in skeletal muscle that enhances its consumption of glycogen, thereby limiting endurance capacity.


1971 ◽  
Vol 49 (5) ◽  
pp. 394-398 ◽  
Author(s):  
W. D. Wagner ◽  
R. A. Peterson ◽  
R. J. Cenedella

Plasma free fatty acid (FFA) levels and the effects of prostaglandin E1 (PGE1) were studied in cold-acclimated and cold-exposed chickens and compared to controls. Chickens cold-acclimated at 4–7 or 8–11 °C for 4 weeks had significantly elevated plasma FFA when compared to the controls at 19–21 °C. Although PGE1 had no effect on the basal level of FFA of controls, a significantly lower plasma FFA was seen after injection of either 10 or 30 μg PGE1/kg in cold-acclimated chickens. Chickens cold-exposed to 2–3 °C for 4 h demonstrated significant elevations of plasma FFA when compared to controls. Only 30 μg PGE1/kg significantly depressed the plasma FFA in the cold-exposed birds. No inhibition of basal FFA release was seen in control animals. From these experiments, it is concluded that chickens mobilize FFA extensively under cold-exposure and that this stimulated lipolysis is inhibited by PGE1.


2004 ◽  
Vol 287 (6) ◽  
pp. E1189-E1194 ◽  
Author(s):  
Christian P. Fischer ◽  
Peter Plomgaard ◽  
Anne K. Hansen ◽  
Henriette Pilegaard ◽  
Bengt Saltin ◽  
...  

Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to a less-pronounced increase of skeletal muscle IL-6 mRNA in response to acute exercise. Thus, before and after 10 wk of knee extensor endurance training, skeletal muscle IL-6 mRNA expression was determined in young healthy men ( n = 7) in response to 3 h of dynamic knee extensor exercise, using the same relative workload. Maximal power output, time to exhaustion during submaximal exercise, resting muscle glycogen content, and citrate synthase and 3-hydroxyacyl-CoA dehydrogenase enzyme activity were all significantly enhanced by training. IL-6 mRNA expression in resting skeletal muscle did not change in response to training. However, although absolute workload during acute exercise was 44% higher ( P < 0.05) after the training period, skeletal muscle IL-6 mRNA content increased 76-fold ( P < 0.05) in response to exercise before the training period, but only 8-fold ( P < 0.05, relative to rest and pretraining) in response to exercise after training. Furthermore, the exercise-induced increase of plasma IL-6 ( P < 0.05, pre- and posttraining) was not higher after training despite higher absolute work intensity. In conclusion, the magnitude of the exercise-induced IL-6 mRNA expression in contracting human skeletal muscle was markedly reduced by 10 wk of training.


2017 ◽  
Vol 117 (10) ◽  
pp. 1343-1350 ◽  
Author(s):  
Tsen-Wei Tsai ◽  
Chia-Chen Chang ◽  
Su-Fen Liao ◽  
Yi-Hung Liao ◽  
Chien-Wen Hou ◽  
...  

AbstractThe purpose of this study was to investigate the effects of 8-week green tea extract (GTE) supplementation on promoting postexercise muscle glycogen resynthesis and systemic energy substrate utilisation in young college students. A total of eight healthy male participants (age: 22·0 (se 1·0) years, BMI: 24·2 (se 0·7) kg/m2, VO2max: 43·2 (se 2·4) ml/kg per min) participated in this study. GTE (500 mg/d for 8 weeks) was compared with placebo in participants in a double-blind/placebo-controlled and crossover study design with an 8-week washout period. Thereafter, all participants performed a 60-min cycling exercise (75 % VO2max) and consumed a carbohydrate-enriched meal immediately after exercise. Vastus lateralis muscle samples were collected immediately (0 h) and 3 h after exercise, and blood and gaseous samples were collected during the 3-h postexercise recovery period. An 8-week oral GTE supplementation had no effects on further promoting muscle glycogen resynthesis in exercised human skeletal muscle, but the exercise-induced muscle GLUT type 4 (GLUT4) protein content was greater in the GTE supplementation trial (P<0·05). We observed that, during the postexercise recovery period, GTE supplementation elicited an increase in energy reliance on fat oxidation compared with the placebo trial (P<0·05), although there were no differences in blood glucose and insulin responses between the two trials. In summary, 8-week oral GTE supplementation increases postexercise systemic fat oxidation and exercise-induced muscle GLUT4 protein content in response to an acute bout of endurance exercise. However, GTE supplementation has no further benefit on promoting muscle glycogen resynthesis during the postexercise period.


1964 ◽  
Vol 270 (17) ◽  
pp. 865-870 ◽  
Author(s):  
Karl Engelman ◽  
Peter S. Mueller ◽  
Albert Sjoerdsma

Diabetes ◽  
2005 ◽  
Vol 54 (6) ◽  
pp. 1640-1648 ◽  
Author(s):  
R. Belfort ◽  
L. Mandarino ◽  
S. Kashyap ◽  
K. Wirfel ◽  
T. Pratipanawatr ◽  
...  

1982 ◽  
Vol 60 (5) ◽  
pp. 634-637 ◽  
Author(s):  
James L. Poland ◽  
Jerry W. Poland ◽  
Richard N. Honey

Though glucocorticoids were previously implicated in the support of myocardial glycogen supercompensation after exercise, it was unclear why skeletal muscle glycogen did not simultaneously supercompensate since it was also exposed to the exercise-induced glucocorticoid increases. The current study shows that glucocorticoids differentially affect cardiac and skeletal muscle glycogen. Following dexamethasone administration (400 μg i.p.) myocardial glycogen peaked at 6 h while glycogen in the soleus, red vastus lateralis, and white vastus lateralis increased more slowly and reached the highest values 17 h postinjection. Concurrently, blood glucose, insulin, and glucagon remained at control levels. Liver glycogen increased within 2 h and continued to rise with a peak value at 17 h. Plasma free fatty acid (FFA) levels increased and remained high throughout the 26-h experimental period. High FFA levels inhibit glycogenolysis and thus could be partially responsible for glucocorticoid-induced glycogen increases. It is postulated that glycogen supercompensation does not readily occur in skeletal muscles after exercise because of the brevity of the corticosterone and FFA increases and the slowness of the skeletal muscle glycogen response to glucocorticoids.


Sign in / Sign up

Export Citation Format

Share Document