Deoxysphingolipids—Novel Skeletal Muscle Lipids Related to Insulin Resistance in Humans That Decrease Insulin Sensitivity In Vitro

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1935-P
Author(s):  
SIMONA ZARINI ◽  
LEIGH PERREAULT ◽  
SEAN A. NEWSOM ◽  
DARCY E. KAHN ◽  
ANNA KEREGE ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Min Liu ◽  
Jian Qin ◽  
Yarong Hao ◽  
Min Liu ◽  
Jun Luo ◽  
...  

Objective. The antidiabetes drug astragalus polysaccharide (APS) is capable of increasing insulin sensitivity in skeletal muscle and improving whole-body glucose homeostasis. Recent studies suggest that skeletal muscle secreted growth factor myostatin plays an important role in regulating insulin signaling and insulin resistance. We hypothesized that regulation of skeletal muscle myostatin expression may be involved in the improvement of insulin sensitivity by APS.Methods. APS was administered to 13-week-old diabetic KKAy and nondiabetic C57BL/6J mice for 8 weeks. Complementary studies examined APS effects on the saturated acid palmitate-induced insulin resistance and myostatin expression in C2C12 cells.Results. APS treatment ameliorated hyperglycemia, hyperlipidemia, and insulin resistance and decreased the elevation of myostatin expression and malondialdehyde production in skeletal muscle of noninsulin-dependent diabetic KKAy mice. In C2C12 cells in vitro, saturated acid palmitate-induced impaired glucose uptake, overproduction of ROS, activation of extracellular regulated protein kinases (ERK), and NF-κB were partially restored by APS treatment. The protective effects of APS were mimicked by ERK and NF-κB inhibitors, respectively.Conclusion. Our study demonstrates elevated myostatin expression in skeletal muscle of type 2 diabetic KKAy mice and in cultured C2C12 cells exposed to palmitate. APS is capable of improving insulin sensitivity and decreasing myostatin expression in skeletal muscle through downregulating ROS-ERK-NF-κB pathway.


2001 ◽  
Vol 9 (9) ◽  
pp. 535-543 ◽  
Author(s):  
Stuart M. Furler ◽  
Ann M. Poynten ◽  
Adamandia D. Kriketos ◽  
Andrew J. Lowy ◽  
Bronwyn A. Ellis ◽  
...  

2017 ◽  
Vol 59 (4) ◽  
pp. 339-350 ◽  
Author(s):  
Penny Ahlstrom ◽  
Esther Rai ◽  
Suharto Chakma ◽  
Hee Ho Cho ◽  
Palanivel Rengasamy ◽  
...  

Skeletal muscle insulin resistance is known to play an important role in the pathogenesis of diabetes, and one potential causative cellular mechanism is endoplasmic reticulum (ER) stress. Adiponectin mediates anti-diabetic effects via direct metabolic actions and by improving insulin sensitivity, and we recently demonstrated an important role in stimulation of autophagy by adiponectin. However, there is limited knowledge on crosstalk between autophagy and ER stress in skeletal muscle and in particular how they are regulated by adiponectin. Here, we utilized the model of high insulin/glucose (HIHG)-induced insulin resistance, determined by measuring Akt phosphorylation (T308 and S473) and glucose uptake in L6 skeletal muscle cells. HIHG reduced autophagic flux measured by LC3 and p62 Western blotting and tandem fluorescent RFP/GFP-LC3 immunofluorescence (IF). HIHG also induced ER stress assessed by thioflavin T/KDEL IF, pIRE1, pPERK, peIF2α and ATF6 Western blotting and induction of a GRP78-mCherry reporter. Induction of autophagy by adiponectin or rapamycin attenuated HIHG-induced ER stress and improved insulin sensitivity. The functional significance of enhanced autophagy was validated by demonstrating a lack of improved insulin sensitivity in response to adiponectin in autophagy-deficient cells generated by overexpression of dominant negative mutant of Atg5. In summary, adiponectin-induced autophagy in skeletal muscle cells alleviated HIHG-induced ER stress and insulin resistance.


2020 ◽  
Author(s):  
Feifan Guo ◽  
Yuguo Niu ◽  
Haizhou Jiang ◽  
Hanrui Yin ◽  
Fenfen Wang ◽  
...  

Abstract The current study aimed to investigate the role of endoplasmic reticulum aminopeptidase 1 (ERAP1), a novel hepatokine, in whole-body glucose metabolism. Here, we found that hepatic ERAP1 levels were increased in insulin-resistant leptin-receptor-mutated (db/db) and high-fat diet (HFD)-fed mice. Consistently, hepatic ERAP1 overexpression attenuated skeletal muscle (SM) insulin sensitivity, whereas knockdown ameliorated SM insulin resistance. Furthermore, serum and hepatic ERAP1 levels were positively correlated, and recombinant mouse ERAP1 or conditioned medium with high ERAP1 content (CM-ERAP1) attenuated insulin signaling in C2C12 myotubes, and CM-ERAP1 or HFD-induced insulin resistance was blocked by ERAP1 neutralizing antibodies. Mechanistically, ERAP1 reduced ADRB2 expression and interrupted ADRB2-dependent signaling in C2C12 myotubes. Finally, ERAP1 inhibition via global knockout or the inhibitor thimerosal improved insulin sensitivity. Together, ERAP1 is a hepatokine that impairs SM and whole-body insulin sensitivity, and its inhibition might provide a therapeutic strategy for diabetes, particularly for those with SM insulin resistance.


2008 ◽  
Vol 32 (3) ◽  
pp. 352-359 ◽  
Author(s):  
Yvonne Katterle ◽  
Susanne Keipert ◽  
Jana Hof ◽  
Susanne Klaus

We evaluated the effect of skeletal muscle mitochondrial uncoupling on energy and glucose metabolism under different diets. For 3 mo, transgenic HSA-mUCP1 mice with ectopic expression of uncoupling protein 1 in skeletal muscle and wild-type littermates were fed semisynthetic diets with varying macronutrient ratios (energy % carbohydrate-protein-fat): HCLF (41:42:17), HCHF (41:16:43); LCHF (11:45:44). Body composition, energy metabolism, and insulin resistance were assessed by NMR, indirect calorimetry, and insulin tolerance test, respectively. Gene expression in different organs was determined by real-time PCR. In wild type, both high-fat diets led to an increase in body weight and fat. HSA-mUCP1 mice considerably increased body fat on HCHF but stayed lean on the other diets. Irrespective of differences in body fat content, HSA-mUCP1 mice showed higher insulin sensitivity and decreased plasma insulin and liver triglycerides. Respiratory quotient and gene expression indicated overall increased carbohydrate oxidation of HSA-mUCP1 but a preferential channeling of fatty acids into muscle rather than liver with high-fat diets. Evidence for increased lipogenesis in white fat of HSA-mUCP1 mice suggests increased energy dissipating substrate cycling. Retinol binding protein 4 expression in white fat was increased in HSA-mUCP1 mice despite increased insulin sensitivity, excluding a causal role in the development of insulin resistance. We conclude that skeletal muscle mitochondrial uncoupling does not protect from the development of obesity in all circumstances. Rather it can lead to a “healthy” obese phenotype by preserving insulin sensitivity and a high metabolic flexibility, thus protecting from the development of obesity associated disturbances of glucose homeostasis.


Author(s):  
Henrike Sell ◽  
Jørgen Jensen ◽  
Juergen Eckel

1989 ◽  
Vol 257 (3) ◽  
pp. E418-E425 ◽  
Author(s):  
M. O. Sowell ◽  
S. L. Dutton ◽  
M. G. Buse

Denervation (24 h) of skeletal muscle causes severe postreceptor insulin resistance of glucose transport and glycogen synthesis that is demonstrable in isolated muscles after short (30 min) preincubations. After longer preincubations (2-4 h), the insulin response of glucose transport increased to normal, whereas glycogen synthesis remained insulin resistant. Basal and insulin-stimulated amino acid transport were significantly lower in denervated muscles than in controls after short or long incubations, although the percentage stimulation of transport by insulin was not significantly different. The development of glucose transport insulin resistance after denervation was not attributable to increased sensitivity to glucocorticoids or adenosine. The selective in vitro reversal of glucose transport insulin resistance was not dependent on medium composition, did not require protein or prostaglandin synthesis, and could not be attributed to release of a positive regulator into the medium. The data suggest 1) the insulin receptor in muscle stimulates glucose transport by a signaling pathway that is not shared by other insulin-sensitive effector systems, and 2) denervation may affect insulin receptor signal transduction at more than one site.


2020 ◽  
Author(s):  
Mariarosaria Negri ◽  
Claudia Pivonello ◽  
Chiara Simeoli ◽  
Gilda Di Gennaro ◽  
Mary Anna Venneri ◽  
...  

Introduction/Aim: Circadian rhythm disruption is emerging as a risk factor for metabolic disorders and particularly, alterations in clock genes circadian expression have been shown to influence insulin sensitivity. Recently, the reciprocal interplay between the circadian clock machinery and HPA axis has been largely demonstrated: the circadian clock may control the physiological circadian endogenous glucocorticoids secretion and action; glucocorticoids, in turn, are potent regulator of the circadian clock and their inappropriate replacement has been associated with metabolic impairment. The aim of the current study was to investigate in vitro the interaction between the timing-of-the-day exposure to different hydrocortisone (HC) concentrations on muscle insulin sensitivity. Methods: Serum-shock synchronized mouse skeletal muscle C2C12 cells were exposed to different HC concentrations recapitulating the circulating daily physiological cortisol profile (standard cortisol profile), the circulating daily cortisol profile that reached in adrenal insufficient (AI) patients treated with once-daily MR-HC (flat cortisol profile) and treated with thrice-daily of conventional IR-HC (steep cortisol profile). The 24 hrs spontaneous oscillation of the clock genes in synchronized C2C12 cells was used to align the timing for in vitro HC exposure (Bmal1 acrophase, midphase and bathyphase) with the reference times of cortisol peaks in AI treated with IR-HC (8 am, 1 pm, 6 pm). A panel of 84 insulin sensitivity related genes and intracellular insulin signaling proteins were analyzed by RT-qPCR and western blot, respectively. Results: Only the steep profile, characterized by a higher HC exposure during Bmal1 bathyphase, produced significant downregulation in 21 insulin sensitivity-related genes. Among these, Insr, Irs1, Irs2, Pi3kca and Adipor2 were downregulated when compared the flat to the standard or steep profile. Reduced intracellular IRS1 Tyr608, AKT Ser473, AMPK Thr172 and ACC Ser79 phosphorylations were also observed. Conclusions: The current study demonstrated that is late-in-the-day cortisol exposure that modulates insulin sensitivity-related genes expression and intracellular insulin signaling in skeletal muscle cells.


2019 ◽  
Vol 105 (4) ◽  
pp. 1210-1220 ◽  
Author(s):  
John J Dubé ◽  
Michael L Collyer ◽  
Sara Trant ◽  
Frederico G S Toledo ◽  
Bret H Goodpaster ◽  
...  

Abstract Context African American women (AAW) have a higher incidence of insulin resistance and are at a greater risk for the development of obesity and type 2 diabetes than Caucasian women (CW). Although several factors have been proposed to mediate these racial disparities, the mechanisms remain poorly defined. We previously demonstrated that sedentary lean AAW have lower peripheral insulin sensitivity, reduced maximal aerobic fitness (VO2max), and lower resting metabolic rate (RMR) than CW. We have also demonstrated that skeletal muscle mitochondrial respiration is lower in AAW and appears to play a role in these racial differences. Objective The goal of this study was to assess mitochondrial pathways and dynamics to examine the potential mechanisms of lower insulin sensitivity, RMR, VO2max, and mitochondrial capacity in AAW. Design To achieve this goal, we assessed several mitochondrial pathways in skeletal muscle using gene array technology and semiquantitative protein analysis. Results We report alterations in mitochondrial pathways associated with inner membrane small molecule transport genes, fusion–fission, and autophagy in lean AAW. These differences were associated with lower insulin sensitivity, RMR, and VO2max. Conclusions Together these data suggest that the metabolic racial disparity of insulin resistance, RMR, VO2max, and mitochondrial capacity may be mediated by perturbations in mitochondrial pathways associated with membrane transport, fission–fusion, and autophagy. The mechanisms contributing to these differences remain unknown.


2020 ◽  
Vol 21 (4) ◽  
pp. 1514 ◽  
Author(s):  
Paul T. Reidy ◽  
Ziad S. Mahmassani ◽  
Alec I. McKenzie ◽  
Jonathan J. Petrocelli ◽  
Scott A. Summers ◽  
...  

Intramuscular lipid accumulation has been associated with insulin resistance (IR), aging, diabetes, dyslipidemia, and obesity. A substantial body of evidence has implicated ceramides, a sphingolipid intermediate, as potent antagonists of insulin action that drive insulin resistance. Indeed, genetic mouse studies that lower ceramides are potently insulin sensitizing. Surprisingly less is known about how physical activity (skeletal muscle contraction) regulates ceramides, especially in light that muscle contraction regulates insulin sensitivity. The purpose of this review is to critically evaluate studies (rodent and human) concerning the relationship between skeletal muscle ceramides and IR in response to increased physical activity. Our review of the literature indicates that chronic exercise reduces ceramide levels in individuals with obesity, diabetes, or hyperlipidemia. However, metabolically healthy individuals engaged in increased physical activity can improve insulin sensitivity independent of changes in skeletal muscle ceramide content. Herein we discuss these studies and provide context regarding the technical limitations (e.g., difficulty assessing the myriad ceramide species, the challenge of obtaining information on subcellular compartmentalization, and the paucity of flux measurements) and a lack of mechanistic studies that prevent a more sophisticated assessment of the ceramide pathway during increased contractile activity that lead to divergences in skeletal muscle insulin sensitivity.


Sign in / Sign up

Export Citation Format

Share Document