2137-PUB: Exercise and Stevia R. Extracts Attenuate Diabetic Cardiomyopathy in Type 2 Diabetic Rats via Upregulation of Nrf2 and Suppression of Oxidative Stress, Fibrosis, Apoptosis, and Sympathetic Overactivity

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2137-PUB
Author(s):  
ABDELAZIZ HUSSEIN ◽  
ELSAYED A. EID ◽  
MEDHAT TAHA ◽  
LASHIN LASHIN
2020 ◽  
Vol 20 (7) ◽  
pp. 1117-1132
Author(s):  
Abdelaziz M. Hussein ◽  
Elsayed A. Eid ◽  
Ismaeel Bin-Jaliah ◽  
Medhat Taha ◽  
Lashin S. Lashin

Background and Aims: In the current work, we studied the effects of exercise and stevia rebaudiana (R) extracts on diabetic cardiomyopathy (DCM) in type 2 diabetic rats and their possible underlying mechanisms. Methods: : Thirty-two male Sprague Dawley rats were randomly allocated into 4 equal groups; a) normal control group, b) DM group, type 2 diabetic rats received 2 ml oral saline daily for 4 weeks, c) DM+ Exercise, type 2 diabetic rats were treated with exercise for 4 weeks and d) DM+ stevia R extracts: type 2 diabetic rats received methanolic stevia R extracts. By the end of the experiment, serum blood glucose, HOMA-IR, insulin and cardiac enzymes (LDH, CK-MB), cardiac histopathology, oxidative stress markers (MDA, GSH and CAT), myocardial fibrosis by Masson trichrome, the expression of p53, caspase-3, α-SMA and tyrosine hydroxylase (TH) by immunostaining in myocardial tissues were measured. Results: T2DM caused a significant increase in blood glucose, HOMA-IR index, serum CK-MB and LDH, myocardial damage and fibrosis, myocardial MDA, myocardial α-SMA, p53, caspase-3, Nrf2 and TH density with a significant decrease in serum insulin and myocardial GSH and CAT (p< 0.05). On the other hand, treatment with either exercise or stevia R extracts significantly improved all studied parameters (p< 0.05). Moreover, the effects of stevia R was more significant than exercise (p< 0.05). Conclusion: Both exercise and methanolic stevia R extracts showed cardioprotective effects against DCM and Stevia R offered more cardioprotective than exercise. This cardioprotective effect of these lines of treatment might be due to attenuation of oxidative stress, apoptosis, sympathetic nerve density and fibrosis and upregulation of the antioxidant transcription factor, Nrf2.


Biomedicines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 43 ◽  
Author(s):  
Abdelaziz M. Hussein ◽  
Elsayed A. Eid ◽  
Medhat Taha ◽  
Rami M. Elshazli ◽  
Raouf Fekry Bedir ◽  
...  

The present study investigated the possible cardioprotective effects of GLP1 and SGLT2i against diabetic cardiomyopathy (DCM) in type 2 diabetic rats and the possible underlying mechanisms. Methods: Thirty-two male Sprague Dawley rats were randomly subdivided into 4 equal groups: (a) control group, (b) DM group, type 2 diabetic rats with saline daily for 4 weeks, (c) DM + GLP1, as DM group with GLP1 analogue (liraglutide) at a dose of 75 µg/kg for 4 weeks, and (d) DM + SGLT2i as DM group with SGLT2 inhibitor (dapagliflozin) at a dose of 1 mg/kg for 4 weeks. By the end of treatment (4 weeks), serum blood glucose, homeostasis model assessment insulin resistance (HOMA-IR), insulin, and cardiac enzymes (LDH, CK-MB) were measured. Also, the cardiac histopathology, myocardial oxidative stress markers (malondialdehyde (MDA), glutathione (GSH) and CAT) and norepinephrine (NE), myocardial fibrosis, the expression of caspase-3, TGF-β, TNF-α, and tyrosine hydroxylase (TH) in myocardial tissues were measured. Results: T2DM caused significant increase in serum glucose, HOMA-IR, serum CK-MB, and LDH (p < 0.05). Also, DM caused significant myocardial damage and fibrosis; elevation of myocardial MDA; NE with upregulation of myocardial caspase-3, TNF-α, TGF-β, and TH; and significant decrease in serum insulin and myocardial GSH and CAT (p < 0.05). Administration of either GLP1 analog or SGLT2i caused a significant improvement in all studied parameters (p < 0.05). Conclusion: We concluded that both GLP1 and SGLT2i exhibited cardioprotective effects against DCM in T2DM, with the upper hand for SGLT2i. This might be due to attenuation of fibrosis, oxidative stress, apoptosis (caspase-3), sympathetic nerve activity, and inflammatory cytokines (TNF-α and TGF-β).


Nitric Oxide ◽  
2020 ◽  
Vol 103 ◽  
pp. 20-28
Author(s):  
Hamideh Afzali ◽  
Mohammad Khaksari ◽  
Reza Norouzirad ◽  
Sajad Jeddi ◽  
Khosrow Kashfi ◽  
...  

2016 ◽  
Vol 177 (1) ◽  
pp. 132-138 ◽  
Author(s):  
Soheila Asadi ◽  
Mohammad Nabi Moradi ◽  
Nejat Khyripour ◽  
Mohammad Taghi Goodarzi ◽  
Marzieh Mahmoodi

2016 ◽  
Vol 103 (4) ◽  
pp. 459-468 ◽  
Author(s):  
V Ghorbanzadeh ◽  
M Mohammadi ◽  
G Mohaddes ◽  
H Dariushnejad ◽  
L Chodari ◽  
...  

Background Oxidative stress plays a critical role in the pathogenesis and progression of type 2 diabetes and diabetic-associated cardiovascular complications. This study investigated the impact of crocin combined with voluntary exercise on heart oxidative stress indicator in high-fat diet-induced type 2 diabetic rats. Materials and methods Rats were divided into four groups: diabetes, diabetic-crocin, diabetic-voluntary exercise, diabetic-crocin-voluntary exercise. Type 2 diabetes was induced by high-fat diet (4 weeks) and injection of streptozotocin (intraperitoneally, 35 mg/kg). Animals received crocin orally (50 mg/kg); voluntary exercise was performed alone or combined with crocin treatment for 8 weeks. Finally, malondialdehyde (MDA), activity of antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured spectrophotometrically. Results Treatment of diabetic rats with crocin and exercise significantly decreased the levels of MDA (p < 0.001) and increased the activity of SOD, GPx, and CAT compared with the untreated diabetic group. In addition, combination of exercise and crocin amplified their effect on antioxidant levels in the heart tissue of type 2 diabetic rats. Conclusion We suggest that a combination of crocin with voluntary exercise treatment may cause more beneficial effects in antioxidant defense system of heart tissues than the use of crocin or voluntary exercise alone.


2021 ◽  
Author(s):  
Tao Jiang ◽  
Tianhua Liu ◽  
Xijin Deng ◽  
Wengang Ding ◽  
Ziyong Yue ◽  
...  

Abstract BackgroundDiabetes mellitus (DM) is a key contributing factor to the poor survival in lung transplantation recipients. Mitochondrial dysfunction is recognized as a critical mediator in the pathogenesis of diabetic lung ischemia-reperfusion (IR) injury. The protective effects of adiponectin have been demonstrated in our previously study, but the underlying mechanism remained unclear. Here we demonstrated an important role of mitophagy in the protective effect of adiponectin during diabetic lung IR injury.Methods High-fat diet-fed streptozotocin-induced type 2 diabetic rats as recipients were exposed to adiponectin with or without administration of the SIRT1 inhibitor EX527 following lung transplantation. To unravel the mechanisms underlying the action of adiponectin, rat pulmonary microvascular endothelial cells were transfected with SIRT1 small-interfering RNA or Pink1 small-interfering RNA and then subjected to in vitro diabetic lung IR injury.ResultsMitophagy was impaired in the diabetic lung subjected to IR injury, accompanied by increased oxidative stress, inflammation, apoptosis, and mitochondrial dysfunction. Adiponectin induced mitophagy and attenuated subsequent diabetic lung IR injury by improving lung functional recovery, suppressing oxidative damage, diminishing inflammation, decreasing cell apoptosis, and preserving mitochondrial function. However, both inhibitors of mitophagy and knockdown of Pink1 suppressed mitophagy, and reduced the protective action of adiponectin. Furthermore, we demonstrated that APN affected Pink1 stabilization via the SIRT1 signaling pathway, and knockdown of SIRT1 suppressed Pink1 expression and compromised the protective effect of adiponectin.ConclusionThese data demonstrated that adiponectin attenuated reperfusion-induced oxidative stress, inflammation, apoptosis and mitochondrial dysfunction via activation of SIRT1-Pink1 signaling-mediated mitophagy in diabetic lung IR injury.


Sign in / Sign up

Export Citation Format

Share Document