1264-PUB: Association between Serum Fatty Acid Metabolism Profile and Diabetic Nephropathy: A Study in Northeastern China

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 1264-PUB
Author(s):  
YAZHUO LIU ◽  
YINGYING LI ◽  
MI ZHOU ◽  
XINGHAI XIA ◽  
HUI SHEN ◽  
...  
Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 504-P
Author(s):  
YINGYING LI ◽  
MI ZHOU ◽  
XINGHAI XIA ◽  
HUI SHEN ◽  
YIKE LI ◽  
...  

Author(s):  
Swayam Prakash Srivastava ◽  
Han Zhou ◽  
Ocean Setia ◽  
Alan Dardik ◽  
Carlos Fernandez‐Hernando ◽  
...  

Background Proteinuria and glomerular segmental fibrosis are inevitable complications of diabetic nephropathy though their mechanisms are poorly understood. Understanding the clinical characteristics and pathogenesis of proteinuria and glomerular segmental fibrosis in diabetic nephropathy is, therefore, urgently needed for patient management of this severe disease. Methods and Results Diabetes mellitus was induced in podocyte‐specific glucocorticoid receptor knockout (GR PKO ) mice and control littermates by administration of streptozotocin. Primary podocytes were isolated and subjected to analysis of Wnt signaling and fatty acid metabolism. Conditioned media from primary podocytes was transferred to glomerular endothelial cells. Histologic analysis of kidneys from diabetic GR PKO mice showed worsened fibrosis, increased collagen deposition, and glomerulomegaly indicating severe glomerular fibrosis. Higher expression of transforming growth factor‐βR1 and β‐catenin and suppressed expression of carnitine palmitoyltransferase 1A in nephrin‐positive cells were found in the kidneys of diabetic GR PKO mice. Podocytes isolated from diabetic GR PKO mice demonstrated significantly higher profibrotic gene expression and suppressed fatty acid oxidation compared with controls. Administration of a Wnt inhibitor significantly improved the fibrotic features in GR PKO mice. The glomerular endothelium of diabetic GR PKO mice demonstrated the features of endothelial‐to‐mesenchymal transition. Moreover, endothelial cells treated with conditioned media from podocytes lacking GR showed increased expression of α‐smooth muscle actin, transforming growth factor‐βR1 and β‐catenin levels. Conclusions These data demonstrate that loss of podocyte GR leads to upregulation of Wnt signaling and disruption in fatty acid metabolism. Podocyte–endothelial cell crosstalk, mediated through GR, is important for glomerular homeostasis, and its disruption likely contributes to diabetic nephropathy.


1990 ◽  
Vol 29 (01) ◽  
pp. 28-34 ◽  
Author(s):  
F. C. Visser ◽  
M. J. van Eenige ◽  
G. Westera ◽  
J. P. Roos ◽  
C. M. B. Duwel

Changes in myocardial metabolism can be detected externally by registration of time-activity curves after administration of radioiodinated fatty acids. In this scintigraphic study the influence of lactate on fatty acid metabolism was investigated in the normal human myocardium, traced with 123l-17-iodoheptadecanoic acid (123l-17-HDA). In patients (paired, n = 7) lactate loading decreased the uptake of 123l-17-HDA significantly from 27 (control: 22-36) to 20 counts/min/pixel (16-31; p <0.05 Wilcoxon). The half-time value increased to more than 60 rriin (n = 5), oxidation decreased from 61 to 42%. Coronary vasodilatation, a well-known side effect of lactate loading, was studied separately in a dipyridamole study (paired, n = 6). Coronary vasodilatation did not influence the parameters of the time-activity curve. These results suggest that changes in plasma lactate level as occurring, among other effects, during exercise will influence the parameters of dynamic 123l-17-HDA scintigraphy of the heart.


Sign in / Sign up

Export Citation Format

Share Document