scholarly journals Novel long non-coding RNA lnc-URIDS delays diabetic wound healing by targeting Plod1

Author(s):  
Ada Admin ◽  
Mengdie Hu ◽  
Yuxi Wu ◽  
Chuan Yang ◽  
Xiaoyi Wang ◽  
...  

Impaired wound healing is one of the main reasons that leads to diabetic foot ulcerations. However, the exact mechanism of delayed wound healing in diabetes mellitus is not fully understood. Long non-coding RNAs (lncRNAs) are widely involved in a variety of biological processes and diseases, including diabetes and its associated complications. Here, w<a>e identified a novel lncRNA MRAK052872, named lnc-URIDS (lncRNA <u>U</u>p<u>R</u>egulated <u>i</u>n <u>D</u>iabetic <u>S</u>kin), which regulates wound healing in diabetes mellitus. </a>Lnc-URIDS was highly expressed in diabetic skin and dermal fibroblasts treated with advanced glycation end products (AGEs). Lnc-URIDS knockdown promoted migration of dermal fibroblasts under AGEs treatment <i>in vitro</i> and accelerated diabetic wound healing <i>in vivo</i>. Mechanistically, <a>lnc-URIDS interacts with procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (Plod1), a critical enzyme responsible for collagen cross-linking. </a><a>The binding of lnc-URIDS to Plod1 results in a decreased protein stability of Plod1, which ultimately leads to the dysregulation of collagen production and deposition and delays wound healing. Collectively, this study identifies a novel lncRNA that regulates diabetic wound healing by targeting Plod1. </a><a>The findings of the present study offer some insight into the potential mechanism for the delayed wound healing in diabetes and provide a potential therapeutic target for diabetic foot.</a>

2020 ◽  
Author(s):  
Ada Admin ◽  
Mengdie Hu ◽  
Yuxi Wu ◽  
Chuan Yang ◽  
Xiaoyi Wang ◽  
...  

Impaired wound healing is one of the main reasons that leads to diabetic foot ulcerations. However, the exact mechanism of delayed wound healing in diabetes mellitus is not fully understood. Long non-coding RNAs (lncRNAs) are widely involved in a variety of biological processes and diseases, including diabetes and its associated complications. Here, w<a>e identified a novel lncRNA MRAK052872, named lnc-URIDS (lncRNA <u>U</u>p<u>R</u>egulated <u>i</u>n <u>D</u>iabetic <u>S</u>kin), which regulates wound healing in diabetes mellitus. </a>Lnc-URIDS was highly expressed in diabetic skin and dermal fibroblasts treated with advanced glycation end products (AGEs). Lnc-URIDS knockdown promoted migration of dermal fibroblasts under AGEs treatment <i>in vitro</i> and accelerated diabetic wound healing <i>in vivo</i>. Mechanistically, <a>lnc-URIDS interacts with procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (Plod1), a critical enzyme responsible for collagen cross-linking. </a><a>The binding of lnc-URIDS to Plod1 results in a decreased protein stability of Plod1, which ultimately leads to the dysregulation of collagen production and deposition and delays wound healing. Collectively, this study identifies a novel lncRNA that regulates diabetic wound healing by targeting Plod1. </a><a>The findings of the present study offer some insight into the potential mechanism for the delayed wound healing in diabetes and provide a potential therapeutic target for diabetic foot.</a>


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Nicolette N. Houreld

Impaired wound healing is a common complication associated with diabetes with complex pathophysiological underlying mechanisms and often necessitates amputation. With the advancement in laser technology, irradiation of these wounds with low-intensity laser irradiation (LILI) or phototherapy, has shown a vast improvement in wound healing. At the correct laser parameters, LILI has shown to increase migration, viability, and proliferation of diabetic cellsin vitro; there is a stimulatory effect on the mitochondria with a resulting increase in adenosine triphosphate (ATP). In addition, LILI also has an anti-inflammatory and protective effect on these cells. In light of the ever present threat of diabetic foot ulcers, infection, and amputation, new improved therapies and the fortification of wound healing research deserves better prioritization. In this review we look at the complications associated with diabetic wound healing and the effect of laser irradiation bothin vitroandin vivoin diabetic wound healing.


2021 ◽  
Author(s):  
Shune Xiao ◽  
Chunfang Xiao ◽  
Yong Miao ◽  
Jin Wang ◽  
Ruosi Chen ◽  
...  

Abstract Background: Diabetic wounds threaten the health and quality of life of patients and their treatment remains challenging. ADSC-derived exosomes have shown encouraging results in enhancing diabetic wound healing. However, the common method of exosome administration is subcutaneous injection at several sites around the wound, causing further damage and preventing direct contact between the exosomes and the injury site. Methods: A diabetic mouse skin wound model was established. ADSC-derived exosomes (ADSC-Exos) were isolated and in vitro application of exosomes was evaluated using human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs). After preparation and characterization of a scaffold of human acellular amniotic membrane (hAAM) loaded with ADSC-Exos in vitro , they were transplanted into wounds in vivo and wound healing phenomena were observed by histological and immunohistochemical analyses to identify the wound healing mechanism of the exosome-hAAM composites. Results: The hAAM scaffold dressing was very suitable for the delivery of exosomes. ADSC-Exos enhanced the proliferation and migration of HDFs and promoted proliferation and tube formation of HUVECs in vitro . In vivo results from a diabetic skin wound model showed that the hAAM-Exos dressing accelerated wound healing by regulating inflammation, stimulating vascularization and promoting the production of extracellular matrix. Conclusion: Exosome-incorporated hAAM scaffolds showed great potential in promoting diabetic skin wound healing, while also providing strong evidence for the future clinical applications of ADSC-derived exosomes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shune Xiao ◽  
Chunfang Xiao ◽  
Yong Miao ◽  
Jin Wang ◽  
Ruosi Chen ◽  
...  

Abstract Background Diabetic wounds threaten the health and quality of life of patients and their treatment remains challenging. ADSC-derived exosomes have shown encouraging results in enhancing diabetic wound healing. However, how to use exosomes in wound treatment effectively is a problem that needs to be addressed at present. Methods A diabetic mouse skin wound model was established. ADSC-derived exosomes (ADSC-Exos) were isolated, and in vitro application of exosomes was evaluated using human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs). After preparation and characterization of a scaffold of human acellular amniotic membrane (hAAM) loaded with ADSC-Exos in vitro, they were transplanted into wounds in vivo and wound healing phenomena were observed by histological and immunohistochemical analyses to identify the wound healing mechanism of the exosome-hAAM composites. Results The hAAM scaffold dressing was very suitable for the delivery of exosomes. ADSC-Exos enhanced the proliferation and migration of HDFs and promoted proliferation and tube formation of HUVECs in vitro. In vivo results from a diabetic skin wound model showed that the hAAM-Exos dressing accelerated wound healing by regulating inflammation, stimulating vascularization, and promoting the production of extracellular matrix. Conclusion Exosome-incorporated hAAM scaffolds showed great potential in promoting diabetic skin wound healing, while also providing strong evidence for the future clinical applications of ADSC-derived exosomes.


Author(s):  
Ioanna A. Anastasiou ◽  
Ioanna Eleftheriadou ◽  
Anastasios Tentolouris ◽  
Georgia Samakidou ◽  
Nikolaos Papanas ◽  
...  

Diabetic foot ulcers are one of the most dreadful complications of diabetes mellitus and efforts to accelerate diabetic wound healing are of paramount importance to prevent ulcer infections and subsequent lower-limb amputations. There are several treatment approaches for the management of diabetic foot ulcers and honey seems to be a safe and cost-effective therapeutic approach on top of standard of care. The aim of this review was to summarize the therapeutic properties of honey and the data regarding its possible favorable effects on diabetic wound healing. A literature search of articles from 1986 until April 2021 was performed using MEDLINE, EMBASE, and the Cochrane Library to assess for studies examining the therapeutic wound healing properties of honey, it's in vitro effect, and the efficacy and/or mechanism of action of several types of honey used for the treatment of diabetic animal wounds. Honey has antioxidant, anti-inflammatory, and antibacterial properties and in vitro studies of keratinocytes and fibroblasts, as well as studies in diabetic animal models show that treatment with honey is associated with increased re-epithelialization and collagen production, higher wound contraction, and faster wound healing. The use of honey could be a promising approach for the management of diabetic foot ulcers.


2021 ◽  
Vol 12 (6) ◽  
pp. 7621-7632

Diabetes Mellitus is the most prevalent metabolic disorder that is increasing at an alarming rate worldwide. The unregulated glucose level leads to various types of health disorders, and one of the major diabetic complications is delayed wound healing. Due to the more side effects of synthetic drugs, there is a need to explore plants and their phytochemicals for medicinal purposes. It was found that Quercetin, a flavonoid, increases the rate of diabetic wound healing by enhancing the expression of SIRT1. This demands more insight towards Quercetin and its similar compounds, as it is hypothesized that similar compounds may have similar biological properties. Thus similarity searching was done to identify the most similar compounds of Quercetin, and then the molecular docking of the screened compounds was performed using AutoDock Vina. The unique ligands were docked into the active site of SIRT1 protein (PDB ID: 4ZZJ). The binding free energy of the interacting ligand with the protein was estimated. Six compounds were identified which possess the maximum structural similarity with Quercetin, and upon docking, it was found that gossypetin and herbacetin have similar binding modes and binding energy as that of Quercetin (-7.5 kcal/mol). Therefore, the hypothesis has been validated by in silico analysis. Our study identified two phytochemicals, Gossypetin, and Herbacetin which can prove beneficial for improving diabetic wound healing but needs to be validated further by in vitro and in vivo studies.


2021 ◽  
Vol 18 ◽  
Author(s):  
Saima Tufail ◽  
Muhammad Irfan Siddique ◽  
Muhammad Sarfraz ◽  
Muhammad Farhan Sohail ◽  
Muhammad Nabeel Shahid ◽  
...  

Introduction: The pleiotropic effects of statins are recently explored for wound healing through angiogenesis and lymph-angiogenesis that could be of great importance in diabetic wounds. Aim: Aim of the present study is to fabricate nanofilm embedded with simvastatin loaded chitosan nanoparticles (CS-SIM-NPs) has been reported herein to explore the efficacy of SIM in diabetic wound healing. Methods: The NPs, prepared via ionic gelation, were 173nm ± 2.645 in size with a zeta potential -0.299 ± 0.009 and PDI 0.051 ± 0.088 with excellent encapsulation efficiency (99.97%). The optimized formulation (CS: TPP, 1:1) that exhibited the highest drug release (91.64%) was incorporated into polymeric nanofilm (HPMC, Sodium alginate, PVA), followed by in vitro characterization. The optimized nanofilm was applied to the wound created on the back of diabetes-induced (with alloxan injection 120 mg/kg) albino rats. Results: The results showed significant (p < 0.05) improvement in the wound healing process compared to the diabetes-induced non-treated group. The results highlighted the importance of nanofilms loaded with SIM-NPs in diabetic wound healing through angiogenesis promotion at the wound site. Conclusion: Thus, CS-SIM-NPs loaded polymeric nanofilms could be an emerging diabetic wound healing agent in the industry of nanomedicines.


2021 ◽  
Author(s):  
Jiankai Li ◽  
Tianshuai Zhang ◽  
Mingmang Pan ◽  
Feng Xue ◽  
Fang Lv ◽  
...  

Abstract Impaired angiogenesis is one of the predominant reasons for non-healing diabetic wounds. Herein, a nanofiber/ hydrogel core-shell scaffold with three-dimensional (3D) multilayer patterned structure (3D-PT-P/GM) was introduced for promoting diabetic wound healing with improved angiogenesis. The results showed that the 3D-PT-P/GM scaffolds possessed multilayered structure with interlayer spacing of about 15-80 μm, and the hexagonal micropatterned structures were uniformly distributed on the surface of each layer. The nanofibers in the scaffold exhibited distinct core-shell structures with Gelatin methacryloyl (GelMA) hydrogel as the shell and Poly (D, L-lactic acid) (PDLLA) as the core. The results showed that the porosity, water retention time and water vapor permeability of the 3D-PT-P/GM scaffolds increased to 1.6 times, 21 times, and 1.9 times than that of the two-dimensional (2D) PDLLA nanofibrous scaffolds, respectively. The in vitro studies showed that the 3D-PT-P/GM scaffolds could significantly promote cell adhesion, proliferation, infiltration and migration throughout the scaffolds, and the expression of cellular communication protein-related genes, as well as angiogenesis-related genes in the same group, was remarkably upregulated. The in vivo results further demonstrated that the 3D-PT-P/GM scaffolds could not only effectively absorb exudate and provide a moist environment for the wound sites, but also significantly promote the formation of a 3D network of capillaries. As a result, the healing of diabetic wounds was accelerated with enhanced angiogenesis, granulation tissue formation, and collagen deposition. These results indicate that nanofiber/ hydrogel core-shell scaffolds with 3D multilayer patterned structures could provide a new strategy for facilitating chronic wound healing.


2021 ◽  
Author(s):  
Sheikh Tanzina Haque ◽  
Subbroto Kumar Saha ◽  
Md. Enamul Haque ◽  
Nirupam Biswas

Diabetic wounds often presage chronic complications that are difficult to treat. Unfortunately, existing conventional treatment modalities often warrant unpremeditated side effects, given the need to develop alternative therapeutic phenotypes that...


Sign in / Sign up

Export Citation Format

Share Document