scholarly journals Delayed Photo-activation Effects on Mechanical Properties of Dual Cured Resin Cements and Finite Element Analysis of Shrinkage Stresses in Teeth Restored With Ceramic Inlays

2016 ◽  
Vol 41 (5) ◽  
pp. 491-500 ◽  
Author(s):  
CJ Soares ◽  
AA Bicalho ◽  
C Verissimo ◽  
PBF Soares ◽  
D Tantbirojn ◽  
...  

SUMMARY Objective: The aim of this study was to investigate the effect of delayed photo-activation on elastic modulus, Knoop hardness, and post-gel shrinkage of dual cure resin cements and how this affects residual shrinkage stresses in posterior teeth restored with ceramic inlays. Methods and Materials: Four self-adhesive (RelyX Unicem, 3M ESPE; GCem, GC; MonoCem, Shofu; and seT, SDI) and two conventional (RelyX ARC, 3M ESPE; and AllCem, FGM) dual cure resin cements for cementing posterior ceramic inlays were tested. Strain gauge and indentation tests were used to measure the post-gel shrinkage (Shr), elastic modulus (E), and Knoop hardness (KHN) when photo-activated immediately and 3 and 5 minutes after placement (n=10). Shr, E, and KHN results were analyzed using two-way analysis of variance followed by Tukey honestly significant difference post hoc tests (α=0.05). The experimentally determined properties were applied in a finite element analysis of a leucite ceramic inlay (Empress CAD, Ivoclar Vivadent) cemented in a premolar. Modified von Mises stresses were evaluated at the occlusal margins and cavity floor. Results: Shr, E, and KHN varied significantly among the resin cements (p<0.001). Highest overall Shr values were found for RelyX Unicem; GCem had the lowest. Increasing the photo-activation delay decreased Shr significantly. Delayed photo-activation had no effect on E (p=0.556) or KHN (p=0.927). RelyX Unicem had the highest E values; seT and MonoCem had the lowest E values. AllCem and RelyX Unicem had the highest KHN and MonoCem had the lowest KHN. Cements with high Shr and E values caused higher shrinkage stresses. Stresses decreased with delayed photo-activation for all cements. Conclusions: KHN and E values varied among the different resin cements. Residual shrinkage stress levels decreased with increasing photo-activation delay with all resin cements.

2021 ◽  
pp. 073168442199086
Author(s):  
Yunfei Qu ◽  
Dian Wang ◽  
Hongye Zhang

The double V-wing honeycomb can be applied in many fields because of its lower mass and higher performance. In this study, the volume, in-plane elastic modulus and unit cell area of the double V-wing honeycomb were analytically derived, which became parts of the theoretical basis of the novel equivalent method. Based on mass, plateau load, in-plane elastic modulus, compression strain and energy absorption of the double V-wing honeycomb, a novel equivalent method mapping relationship between the thickness–width ratio and the basic parameters was established. The various size factor of the equivalent honeycomb model was denoted as n and constructed by the explicit finite element analysis method. The mechanical properties and energy absorption performance for equivalent honeycombs were investigated and compared with hexagonal honeycombs under dynamic impact. Numerical results showed a well coincidence for each honeycomb under dynamic impact before 0.009 s. Honeycombs with the same thickness–width ratio had similar mechanical properties and energy absorption characteristics. The equivalent method was verified by theoretical analysis, finite element analysis and experimental testing. Equivalent honeycombs exceeded the initial honeycomb in performance efficiency. Improvement of performance and weight loss reached 173.9% and 13.3% to the initial honeycomb. The double V-wing honeycomb possessed stronger impact resistance and better load-bearing capacity than the hexagonal honeycomb under impact in this study. The equivalent method could be applied to select the optimum honeycomb based on requirements and improve the efficiency of the double V-wing honeycomb.


10.2341/08-73 ◽  
2009 ◽  
Vol 34 (2) ◽  
pp. 223-229 ◽  
Author(s):  
A. O. Spazzin ◽  
D. Galafassi ◽  
A. D. de Meira-Júnior ◽  
R. Braz ◽  
C. A. Garbin

Clinical Relevance According to finite element analysis, the zirconia ceramic post created higher stress levels in the post and slightly less in dentin compared with glass fiber posts. Resin cement with a high elastic modulus created higher stress levels in the cement layer. The different film thicknesses of cement did not create significant changes in stress levels.


2012 ◽  
Vol 568 ◽  
pp. 129-133
Author(s):  
Qian Yang ◽  
Jun Xing Zhang ◽  
Geng Ning Zhang

In this paper, we perform a 3D finite element analysis for the longitudinal settlement of a shield tunnel in soft soil, where a substratum soil contains a soft layer. The Mohr-Coulomb model is used for the substratum soil and soft layer. The longitudinal settlements are calculated for different elastic modulus and longitudinal length of the soft layer. The results show that a softer and longer layer will result in the larger settlement. It is also found that the maximum of the longitudinal settlements is linear function of the elastic modulus of the soft layer.


1997 ◽  
Vol 272 (1) ◽  
pp. H425-H437 ◽  
Author(s):  
M. J. Vonesh ◽  
C. H. Cho ◽  
J. V. Pinto ◽  
B. J. Kane ◽  
D. S. Lee ◽  
...  

A method employing intravascular ultrasound (IVUS) and simultaneous hemodynamic measurements, with resultant finite element analysis (FEA) of accurate three-dimensional IVUS reconstructions (3-DR), was developed to estimate the regional distribution of arterial elasticity. Human peripheral arterial specimens (iliac and femoral, n = 7) were collected postmortem and perfused at three static transmural pressures: 80, 120, and 160 mmHg. At each pressure, IVUS data were collected at 2.0-mm increments through a 20.0-mm segment and used to create an accurate 3-DR. Mechanical properties were determined over normotensive and hypertensive ranges. An FEA and optimization procedure was implemented in which the elemental elastic modulus was scaled to minimize the displacement error between the computer-predicted and actual deformations. The “optimized” elastic modulus (Eopt) represents an estimate of the component element material stiffness. A dimensionless variable (beta), quantifying structural stiffness, was computed. Eopt of nodiseased tissue regions (n = 80) was greater than atherosclerotic regions (n = 88) for both normotensive (Norm) and hypertensive (Hyp) pressurization: Norm, 9.3 +/- 0.98 vs. 3.5 +/- 0.30; Hyp, 11.3 +/- 0.72 vs. 8.5 +/- 0.47, respectively (mean +/- SE x 10(6) dyn/cm2; P < 0.01 vs. nondiseased). No differences in beta between nondiseased and atherosclerotic tissue were noted at Norm pressurization. With Hyp pressurization, beta of atherosclerotic regions were greater than nondiseased regions: 21.5 +/- 2.21 vs. 14.0 +/- 2.11, respectively (P < 0.03). This method provides a means to identify regional in vivo variations in mechanical properties of arterial tissue.


2013 ◽  
Vol 29 (12) ◽  
pp. 1244-1250 ◽  
Author(s):  
Christof Holberg ◽  
Philipp Winterhalder ◽  
Andrea Wichelhaus ◽  
Reinhard Hickel ◽  
Karin Huth

Sign in / Sign up

Export Citation Format

Share Document