Glass Ionomer Versus Self-adhesive Cement and the Clinical Performance of Zirconia Coping/Press-on Porcelain Crowns

2021 ◽  
Author(s):  
CRG Torres ◽  
DMS Ávila ◽  
LL Gonçalves ◽  
LCF Meirelles ◽  
MC Mailart ◽  
...  

SUMMARY Objective: This split-mouth clinical study investigated the effect of luting cement on the performance of veneered yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) zirconia crowns. Methods and Materials: A total of 60 crowns prepared with Y-TZP coping and press-on porcelain were made with a split-mouth design in 30 participants. The crowns were cemented either with glass ionomer cement (GIC) (Meron, Voco) or with self-adhesive resin cement (Bifix-SE, Voco). The restorations were assessed immediately after treatment and after 6, 12, 24, 36, and 48 months using the modified United States Public Health Service criteria. The parameters analyzed were retention, color stability, marginal discoloration, marginal adaptation, surface roughness, anatomic form, and secondary caries. The differences between the groups were analyzed by the Fisher exact test in each period of evaluation. The survival rate was analyzed with the Kaplan–Meier and log-rank test (α=0.05). Results: After 48 months, 20 participants attended the recall. During the period of evaluation, 1 crown cemented with glass ionomer cement and 1 crown cemented with resin cement lost retention. Color match, marginal discoloration and adaptation, surface roughness, and anatomic form did not change in any of the periods evaluated, and no secondary caries was observed. No significant differences were found between the 2 luting cements for any of the clinical parameters analyzed, nor for the survival rates during the study. Conclusions: The type of cement did not influence the performance of the crowns after 48 months of clinical use. Both cements resulted in adequate retention rates, aesthetic and functional outcomes, and biological response.

2018 ◽  
Vol 6 (3) ◽  
pp. 548-553 ◽  
Author(s):  
Bandar M. A. Al–Makramani ◽  
Abdul A. A. Razak ◽  
Mohamed I. Abu–Hassan ◽  
Fuad A. Al–Sanabani ◽  
Fahad M. Albakri

BACKGROUND: The selection of the appropriate luting cement is a key factor for achieving a strong bond between prepared teeth and dental restorations.AIM: To evaluate the shear bond strength of Zinc phosphate cement Elite, glass ionomer cement Fuji I, resin-modified glass ionomer cement Fuji Plus and resin luting cement Panavia-F to Turkom-Cera all-ceramic material.MATERIALS AND METHODS: Turkom-Cera was used to form discs 10mm in diameter and 3 mm in thickness (n = 40). The ceramic discs were wet ground, air - particle abraded with 50 - μm aluminium oxide particles and randomly divided into four groups (n = 10). The luting cement was bonded to Turkom-Cera discs as per manufacturer instructions. The shear bond strengths were determined using the universal testing machine at a crosshead speed of 0.5 mm/min. The data were analysed using the tests One Way ANOVA, the nonparametric Kruskal - Wallis test and Mann - Whitney Post hoc test.RESULTS: The shear bond strength of the Elite, Fuji I, Fuji Plus and Panavia F groups were: 0.92 ± 0.42, 2.04 ± 0.78, 4.37 ± 1.18, and 16.42 ± 3.38 MPa, respectively. There was the statistically significant difference between the four luting cement tested (p < 0.05).CONCLUSION: the phosphate-containing resin cement Panavia-F exhibited shear bond strength value significantly higher than all materials tested.


2016 ◽  
Vol 17 (12) ◽  
pp. 1016-1021 ◽  
Author(s):  
Mathew Thomas ◽  
Mohammed Mustafa ◽  
Reshma Karkera ◽  
AP Nirmal Raj ◽  
Lijo Isaac ◽  
...  

ABSTRACT Introduction This study was planned to find the solubility of the conventional luting cements in comparison with that of the polyacid-modified composite luting cement and recently introduced resin-modified glass ionomer cement (RMGIC) with exposure to water at early stages of mixing. Materials and methods An in vitro study of the solubility of the following five commercially available luting cements, viz., glass ionomer cement (GIC) (Fuji I, GC), zinc phosphate (Elite 100, GC), polyacid-modified resin cement (PMCR) (Principle, Dentsply), polycarboxylate cement (PC) (Poly - F, Dentsply), RMGIC (Vitremer, 3M), was conducted. For each of these groups of cements, three resin holders were prepared containing two circular cavities of 5 mm diameter and 2 mm depth. All the cements to be studied were mixed in 30 seconds and then placed in the prepared cavities in the resin cement holder for 30 seconds. Results From all of the observed luting cements, PMCR cement had shown the lowest mean loss of substance at all immersion times and RMGIC showed the highest mean loss of substance at all immersion times in water from 2 to 8 minutes. The solubility of cements decreased by 38% for GIC, 33% for ZnPO4, 50% for PMCR, 29% for PC, and 17% for RMGIC. Conclusion The PMCR cement (Principle-Dentsply) had shown lowest solubility to water at the given time intervals of immersion. This was followed by PC, zinc phosphate, and GIC to various time intervals of immersion. How to cite this article Karkera R, Nirmal Raj AP, Isaac L, Mustafa M, Reddy RN, Thomas M. Comparison of the Solubility of Conventional Luting Cements with that of the Polyacid Modified Composite Luting Cement and Resin-modified Glass Ionomer Cement. J Contemp Dent Pract 2016;17(12):1016-1021.


2013 ◽  
Vol 38 (6) ◽  
pp. E221-E228 ◽  
Author(s):  
O Zmener ◽  
CH Pameijer ◽  
SMH Rincon ◽  
SA Serrano ◽  
C Chaves

SUMMARY Objective To assess the sealing properties of three different luting materials used for cementation of full cast crowns on extracted human premolars. Methods Thirty noncarious human premolars were prepared in a standardized fashion for full cast crown restorations. All margins were placed in dentin. After impressions of the preparations, stone dies were fabricated on which copings were waxed, which were cast in type III alloy using standardized laboratory methods. Teeth were randomly assigned to three groups of 10 samples each (n=10), for which the following cements were used: 1) a resin-modified glass ionomer cement, Rely X Luting Plus (3M ESPE, St Paul, MN, USA); 2) a self-adhesive resin cement, Maxcem Elite (Kerr Corporation, Orange, CA, USA); and 3) a glass ionomer cement, Ketac Cem (3M ESPE), the latter used as control. After cementation the samples were allowed to bench-set for 10 minutes, stored in water at 37°C, subjected to thermal cycling (2000×, between 5°C and 55°C, dwell time 35 seconds), and then stored in sterile phosphate buffer for seven days at 37°C. Subsequently, the occlusal surface was carefully reduced until the dentin was exposed. Finishing on wet sand paper removed the gold flash caused by grinding. After sterilization, the specimens were subjected to bacterial microleakage in a dual chamber apparatus for 60 days. Bacterial leakage was checked daily. Data were analyzed using the Kaplan-Meier survival test. Significant pairwise differences were analyzed using the log-rank test followed by Fisher exact test at a p&lt;0.05 level of significance. Results Rely X Luting Plus showed the lowest microleakage scores, which statistically differed significantly from Maxcem Elite and Ketac Cem (p&lt;0.05). Conclusions Rely X Luting Plus cement displayed significantly lower microleakage scores than a self-adhesive resin-based and conventional glass ionomer cement.


2019 ◽  
pp. 61-67
Author(s):  
Xuan Anh Ngoc Ho ◽  
Anh Chi Phan ◽  
Toai Nguyen

Background: Class II restoration with zirconia inlay is concerned by numerous studies about the luting coupling between zirconia inlay and teeth. The present study was performed to evaluate the microleakage of Class II zirconia inlayusing two different luting agents and compare to direct restoration using bulk fill composite. Aims: To evaluate the microleakage of Class II restorations using three different techniques. Materials and methods: The study was performed in laboratory with three groups. Each of thirty extracted human teeth was prepared a class II cavity with the same dimensions, then these teeth were randomly divided into 3 groups restored by 3 different approaches. Group 1: zirconia inlay cemented with self-etch resin cement (Multilink N); Group 2: zirconia inlay cemented with resin-modified glass ionomer cement (Fuji Plus); Group 3: direct composite restoration using bulk fill composite(Tetric N-Ceram Bulk Fill). All restorations were subjected to thermal cycling (100 cycles 50C – 55 0C), then immersed to 2% methylene blue solution for 24 hours. The microleakage determined by the extent of dye penetration along the gingival wall was assessed using two methods: quantitative and semi-quantitative method. Results: Among three types of restorations, group 1 demonstrated the significantly lower rate of leakage compared to the others, while group 2 and 3 showed no significant difference. Conclusion: Zirconia inlay restoration cemented with self-etch resin cement has least microleakage degree when compare to class II zirconia inlay restoration cemented with resin-modified glass ionomer cement and direct composite restoration using bulk fill composite. Key words: inlay, zirconia ceramic, class II restoration, microleakage.


2020 ◽  
Vol 44 (5) ◽  
pp. 342-347
Author(s):  
Natyla ML Silva ◽  
Victor G Costa ◽  
Letícia M Gonçalves ◽  
Isabella A Gomes ◽  
Marco Aurélio B Paschoal

Objective: The present study investigated the erosive potential of children’s mouthrinses on glass ionomer cement (GIC) samples after simulated toothbrushing. Study design: Forty round-shaped samples of GIC were divided into 3 groups: G1- cetylpyridinium chloride, G2- xylitol and triclosan and G3–Malva sylvestris and xylitol and G4–distilled water as a control group. Prior to the main tests, the samples were submitted to the surface roughness measurement (Ra) and weight analysis (W). Afterward, they were brushed twice day (2× / day) for 15 days and immersed in mouthrinses after the last daily brushing. The final surface roughness (R2) and weight (W2) were determined after completing the tooth brushing-mouth rinsing cycles and the real increase in roughness (ΔRa) and real weight loss (ΔW) were calculated. In addition, stereoscopic images taken at 30× magnification. The data was analyzed by one-way ANOVA and Tukey-test post hoc tests for intergroup comparison and the T-test for dependent samples (α = 0.05). Results: Only group G2 showed increased in roughness ΔRa (1.53 ± 0.94) whereas ΔW values were not significant. However, evident cracks and voids were verified for all tested children’s rinses. Conclusion: Thus, children’s mouthrinse containing xylitol / triclosan increased the GIC roughness, especially when associated with brushing.


2003 ◽  
Vol 14 (3) ◽  
pp. 193-196 ◽  
Author(s):  
Simonides Consani ◽  
Julie Guzela dos Santos ◽  
Lourenço Correr Sobrinho ◽  
Mário Alexandre Coelho Sinhoreti ◽  
Manoel Damião Sousa-Neto

The relationship between metallic cast crowns and tensile strength according to cement types submitted to thermocycling was studied. Seventy-two metallic crowns were cast with Verabond II Ni-Cr alloy and cemented in standardized preparations with 10º tapering. Three types of finishing line (45-degree chamfered, 20-degree bevel shoulder and right shoulder) were made with diamond burs on bovine teeth. Twenty-four metallic crowns in each group were randomly subdivided into three subgroups of 8 samples each according to the cement used: SS White zinc phosphate cement, Vitremer resin-modified glass ionomer cement, and Rely X resin cement and were submitted to thermocycling. Retention was evaluated according to tensile load required to displace the metallic cast crowns from tooth preparations with an Instron testing machine. ANOVA and Tukey's test showed a statistically significant difference among luting materials, with greater results for Rely X resin cement (24.9 kgf) followed by SS White zinc phosphate cement (13.3 kgf) and Vitremer resin-modified glass ionomer cement (10.1 kgf). The finishing line types did not influence the tensile resistance of the crowns fixed with the three cements. Increased tensile resistance of metallic crowns fixed on bovine teeth was obtained with resin cement, independent of the finishing line types.


2010 ◽  
Vol 34 (4) ◽  
pp. 309-312 ◽  
Author(s):  
Priya Subramaniam ◽  
Sapna Kondae ◽  
Kamal Kishore Gupta

The present study evaluated and compared the retentive strength of three luting cements. A total of forty five freshly extracted human primary molars were used in this study. The teeth were prepared to receive stainless steel crowns. They were then randomly divided into three groups, of fifteen teeth each, so as to receive the three different luting cements: conventional glass ionomer, resin modified glass ionomer and adhesive resin. The teeth were then stored in artificial saliva for twenty four hours. The retentive strength of the crowns was determined by using a specially designed Instron Universal Testing Machine (Model 1011). The data was statistically analyzed using ANOVA to evaluate retentive strength for each cement and Tukey test for pair wise comparison. It was concluded that retentive strength of adhesive resin cement and resin modified glass ionomer cement was significantly higher than that of the conventional glass ionomer cement.


2017 ◽  
Vol 15 (3) ◽  
pp. 185
Author(s):  
Dilcele Silva Moreira Dziedzic ◽  
Lucia Helena Ramos da Silva ◽  
Bruna Luiza do Nascimento ◽  
Marina Samara Baechtold ◽  
Gisele Maria Correr ◽  
...  

Aim: This study investigated the effect of an in-office bleaching technique on lightness, color and surface roughness of two commercially available materials: a resin-modified glass-ionomer cement and a nanohybrid resin composite. Methods: Twelve disk-shaped specimens were prepared with both materials. The samples were bleached with 35% hydrogen peroxide. Bleaching was tested initially onto a smooth surface and later onto a polished one of the same specimens. The effect of the treatments on lightness and color was verified with a spectrophotometer. Surface roughness was measured with a digital surface roughness tester. The data were statistically analyzed by repeated measures ANOVA and post hoc Tukey’s test (alpha = 0.05). Results: Significant variation in lightness and color was observed on the resin-modified glass-ionomer cement after the first bleaching procedure. Roughness increased significantly only after polishing the resin-modified glass-ionomer cement surface. Composite color variation was evident in the last observation period, but roughness and lightness variation due to bleaching and polishing was not significant. Conclusion: The bleaching treatment caused significant color alterations on the materials tested. This study observed that the application of in-office bleaching onto the glass-ionomer cement promoted clinically observable color alteration, and polishing after bleaching is contraindicated for this material.


Author(s):  
Farahnaz Sharafeddin ◽  
Somaye Bahrani

Objectives: Glass ionomer cements (GICs) are among the most popular dental restorative materials, but their use is limited due to their clinical disadvantages. Many efforts have been made to improve the properties of these materials by adding various fillers. Incorporation of hydroxyapatite (HA) into the GICs is considered to improve the physical properties of restorations, and may prevent treatment failure. This study aimed to evaluate the surface roughness (Ra) of a conventional glass ionomer cement (CGIC), a resin-modified glass ionomer (RMGI) and a Zirconomer with and without micro-hydroxyapatite (µHA). Materials and Methods: This experimental study was conducted on 6 groups (n=10) including CGIC, CGIC + µHA, RMGI, RMGI + µHA, Zirconomer, and Zirconomer + µHA. A total of 60 disc-shaped samples (6 mm × 2 mm) were prepared in plastic molds and were stored in distilled water for 24 h. After polishing of the specimens, their Ra was measured by a profilometer in micrometers (µm). The data were analyzed using two and one-way ANOVA, Tukey's HSD test, and independent t-test. Results: Incorporation of µHA resulted in statistically significant differences in Ra between the study groups (P<0.05). Following the incorporation of µHA, the Ra significantly decreased in CGIC (P=0.013) and Zirconomer (P=0.003). However, addition of µHA to RMGI resulted in a significant increase in its Ra (P<0.001). Conclusion: Addition of µHA decreased the Ra of Zirconomer and CGIC, and increased the surface roughness of RMGI samples.


Sign in / Sign up

Export Citation Format

Share Document