Influence of Tire Operating Conditions on ABS Performance

2015 ◽  
Vol 43 (3) ◽  
pp. 216-241
Author(s):  
Srikanth Sivaramakrishnan ◽  
Kanwar Bharat Singh ◽  
Peter Lee

ABSTRACT During its normal service life, a tire is subjected to large variations in operating conditions, such as ambient temperature, inflation pressure, and changes in tread depth. The longitudinal force response of the tire changes significantly because of each of these operating conditions. This, in turn, would directly influence the performance of the antilock braking system (ABS) installed in a vehicle. Current ABS systems are tuned for a vehicle with fixed operating thresholds that do not change. The objective of this study was to understand the influence of a tire's operating conditions on ABS efficiency and the extent of variation it can cause on stopping distance. This was done by obtaining longitudinal-slip characteristics for a given tire at various temperatures, inflation pressures, and tread depth through a traction trailer. These data were then used to simulate an ABS braking maneuver using a half-car vehicle model. The major reasons for the loss in stopping distance performance because of a drop in efficiency under each condition was then analyzed in detail. The latter part of this study explored the potential for improvement in stopping distance that could possibly be achieved through an intelligent ABS system that would use tire-sensed information, such as temperature, pressure, and tread depth to calculate essential tire characteristics in real time using an adaptive magic formula and change its tuning parameters accordingly.

2012 ◽  
Vol 229-231 ◽  
pp. 2394-2398 ◽  
Author(s):  
Vimal Rau Aparow ◽  
Ahmad Fauzi ◽  
Muhammad Zahir Hassan ◽  
Khisbullah Hudha

This paper presents about the development of an Antilock Braking System (ABS) using quarter vehicle model and control the ABS using different type of controllers. Antilock braking system (ABS) is an important part in vehicle system to produce additional safety for drivers. In general, Antilock braking systems have been developed to reduce tendency for wheel lock and improve vehicle control during sudden braking especially on slippery road surfaces. In this paper, a variable structure controller has been designed to deal with the strong nonlinearity in the design of ABS controller. The controllers such as PID used as the inner loop controller and Fuzzy Logic as outer loop controller to develop as ABS model to control the stopping distance and longitudinal slip of the wheel.


Author(s):  
A.S. Emam ◽  
Eid S. Mohamed

Recently, the vehicle brake system equipped with anti-lock braking systems (ABS) is considered one of the most important effective safety systems. The importance of ABS, to get maintains the safety of vehicles on roads during emergency braking and it enables reliable stopping whilst maintaining the vehicle stability and ease steer-ability. Therefore, the aim of this research is to investigate the vehicle braking performance of controlled brake ABS that is designed with three types of controller and compares them, they are bang-bang, Proportional Integral Derivative (PID) and Fuzzy Logic Control (FLC) on rough dry and wet roads to control longitudinal slip. The main obstacles of controller design in automobile systems are concerned to high non-linearities of the mathematical model. 2DOF longitudinal quarter vehicle model with taking into account the rational motion of the tire is used to examine the braking performance. The tire-road interface model and braking system model are included in vehicle model. By reviewing the results, it was found that FLC method has an effective and better effect compared to two methods on the performance of brake system equipped with ABS system. It was found that vehicle stopping distance was reduced by 21.77m and 10.3m with dry and wet asphalt roads respectively compared to braking without ABS for fuzzy control at velocity 100 km/hr.


2018 ◽  
Vol 7 (3) ◽  
pp. 1740 ◽  
Author(s):  
Dankan V. Gowda ◽  
Ramachandra A C ◽  
Thippeswamy M N ◽  
Pandurangappa C ◽  
Ramesh Naidu P

This Paper focus, on the different stages associated with the advancement of Automobile Braking Control system. Different V-Models (SIL, MIL, HIL, and DIL) are contrasted with the proposed V model for Hydraulic antilock braking system. The main objective of this research is to enable various loop simulations used in a variety of automotive industries, in order to analyze the performance of different safety functions. A vehicle model is used to represent a real vehicle in a model-based environment. Vehicle model is a sophisticated component, which makes use of two wheeler dynamics concepts to achieve a real vehicle behavior. In this research, an attempt is made to elaborate the various automotive simulations used starting from model in loop simulation to Driver in loop Simulation approaches followed by a V-diagram approach to develop the product. Here an ABS controller is taken as an example model for simulation. 


SIMULATION ◽  
2017 ◽  
Vol 94 (4) ◽  
pp. 327-340 ◽  
Author(s):  
F Ahmad ◽  
K Hudha ◽  
SA Mazlan ◽  
H Jamaluddin ◽  
VR Aparow ◽  
...  

This paper presents an investigation into the performance of a fixed caliper based electronic wedge brake (FIXEWB) in a vehicle braking system. Two techniques were used as assessment methods, which are simulation via MATLAB Simulink software and experimental study through hardware-in-the-loop-simulation (HILS). In the simulation study, the vehicle braking system was simulated by using a validated quarter vehicle traction model with a validated FIXEWB model as the brake actuator. A proportional–integral–derivative controller was utilized as the brake torque control, whereas proportional–integral and proportional controllers were used as the position and speed control of the actuator, respectively. To study the effectiveness of the FIXEWB, the response of the vehicle using the FIXEWB is compared with the responses of a vehicle using a conventional hydraulic brake. A dynamic test, namely braking in the sudden braking at constant speeds of 40 and 60 km/h was then used as the testing method. The simulation results show that the usage of the FIXEWB with an appropriate control strategy produces similar behavior to that of a hydraulic brake in terms of the produced desired braking torque but with faster time response. To study the performance of the FIXEWB when implemented on a real vehicle, an experimental rig using HILS was designed and the results are analyzed using the same dynamic tests. The performance areas evaluated are vehicle body speed, wheel speed, tire longitudinal slip, and the stopping distance experienced by the vehicle. The outcomes from this study can be considered in the design optimization of an antilock braking system control in a real car in the future.


Author(s):  
Hossein Mirzaeinejad ◽  
Mehdi Mirzaei ◽  
Reza Kazemi

Shorter stopping distance and less deviation from the straight line are two requirements of vehicle safe braking on split-µ roads. The first one is achieved by controlling the longitudinal slip of each wheel at its optimum value calculated by road conditions. However, in order to directly control the vehicle directional stability, a new multivariable controller is optimally developed for integrated active front steering (AFS) and direct yaw moment control. In an efficient way to manage two control inputs, the weights of the integrated optimal control law are online determined by fuzzy logics. These logics are defined using the stability index obtained by the phase plane analysis of nonlinear vehicle model. In this way, the required external yaw moment can be calculated for different driving conditions to only compensate the drawback of AFS for stabilising the vehicle system. The minimum usage of stabilising external yaw moment leads to the less reduction of maximum achievable braking forces of one side wheels and results the shorter stopping distance. By determination of the weighs in limit conditions, the integrated control law easily leads to the stand-alone braking control law. The simulation results carried out using a validated vehicle model demonstrate that the integrated control system has a better braking performance compared with the stand-alone braking system, reported in literature, to attain the shorter stopping distance with less lateral deviation on split-µ roads.


2018 ◽  
Vol 46 (2) ◽  
pp. 105-126 ◽  
Author(s):  
A. J. C. Schmeitz ◽  
A. P. Teerhuis

ABSTRACT Tire states can be estimated by measuring the tire contact patch shape as it varies with vertical load, longitudinal and lateral slip, and so on. In this study, a miniature triaxial accelerometer is used to measure the centripetal accelerations at the tire inner liner. A tire state estimator (TSE) algorithm is developed to transform the measured accelerations to actual tire states, in this case vertical load. The approach used for the TSE is the extended Kalman filter (EKF), but an additional peak detection algorithm is used to synchronize the simulation model with the measurement signal before applying the EKF. The simulation model used in the EKF is an empirical model that describes the basic shape of the centripetal acceleration signal. The applicability of the estimator is assessed by considering the accuracy and robustness for several tire operating conditions: vertical load, velocity, inflation pressure, sideslip, camber, and braking. It is concluded that the TSE exhibits accurate vertical load estimation even in cases of varying load and velocity. Further, it is concluded that the vertical load estimation is robust for (pure) camber changes and (pure) longitudinal force disturbances. For relatively high lateral forces as result of sideslip, the estimation error is larger. The current estimator appears to be not robust for inflation pressure changes, but this can be solved by adding an inflation pressure sensor. Similarly, extension of the estimator to estimate lateral force by adding a second accelerometer not only provides an additional state but also adds the possibility of improving the vertical load estimation. Finally, it is demonstrated that the TSE is able to perform in real time and shows fast convergence capabilities for cases in which the initial vertical load and/or sensor position are unknown or when moving away from situations in which the signal-to-noise ratio is poor.


2019 ◽  
Vol 52 (8) ◽  
pp. 717-727
Author(s):  
T Sukumar ◽  
BR Ramesh Bapu ◽  
B Durga Prasad

In commercial vehicle air braking system, leakage is one of the major problems and will affect the performance of the vehicle braking in terms of brake pedal travel and stopping distance. If there is any leakage in the brake system, the vehicle stopping distance will not meet the safety regulations. One of the main reasons for braking system leakage is ineffective sealing mechanism. The majority of sealing elements used in the air brake system are O-rings, lip seals, and gaskets. This article presents an experimental procedure for measuring the sealing pressure between an O-Ring and its mating parts. The contact pressure measurement was performed in a static condition by means of an experimental test rig using Fuji film. For the sealing pressure study, a test rig was properly designed to replicate the actual operating conditions. Contact pressure was evaluated by means of Fuji film interposed between the O-ring and its mating parts. The sealing pressure tests were carried out for different clamping load conditions. The experimental results were compared with the numerical result using the finite-element analysis (FEA). A good correlation was found between the experimental and the numerical results. The outcome from the experimental results will be useful for finalizing the hyperelastic material models, which are input to the FEA for future reference.


1993 ◽  
Vol 21 (1) ◽  
pp. 23-39 ◽  
Author(s):  
R. W. Scavuzzo ◽  
T. R. Richards ◽  
L. T. Charek

Abstract Tire vibration modes are known to play a key role in vehicle ride, for applications ranging from passenger cars to earthmover equipment. Inputs to the tire such as discrete impacts (harshness), rough road surfaces, tire nonuniformities, and tread patterns can potentially excite tire vibration modes. Many parameters affect the frequency of tire vibration modes: tire size, tire construction, inflation pressure, and operating conditions such as speed, load, and temperature. This paper discusses the influence of these parameters on tire vibration modes and describes how these tire modes influence vehicle ride quality. Results from both finite element modeling and modal testing are discussed.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1294
Author(s):  
Xiangdang XUE ◽  
Ka Wai Eric CHENG ◽  
Wing Wa CHAN ◽  
Yat Chi FONG ◽  
Kin Lung Jerry KAN ◽  
...  

An antilock braking system (ABS) is one of the most important components in a road vehicle, which provides active protection during braking, to prevent the wheels from locking-up and achieve handling stability and steerability. The all-electric ABS without any hydraulic components is a potential candidate for electric vehicles. To demonstrate and examine the all-electric ABS algorithms, this article proposes a single-wheel all-electric ABS test bench, which mainly includes the vehicle wheel, the roller, the flywheels, and the electromechanical brake. To simulate dynamic operation of a real vehicle’s wheel, the kinetic energy of the total rotary components in the bench is designed to match the quarter of the one of a commercial car. The vertical force to the wheel is adjustable. The tire-roller contact simulates the real tire-road contact. The roller’s circumferential velocity represents the longitudinal vehicle velocity. The design and analysis of the proposed bench are described in detail. For the developed prototype, the rated clamping force of the electromechanical brake is 11 kN, the maximum vertical force to the wheel reaches 300 kg, and the maximum roller (vehicle) velocity reaches 100 km/h. The measurable bandwidth of the wheel speed is 4 Hz–2 kHz and the motor speed is 2.5 Hz–50 kHz. The measured results including the roller (vehicle) velocity, the wheel velocity, and the wheel slip are satisfactory. This article offers the effective tools to verify all-electric ABS algorithms in a laboratory, hence saving time and cost for the subsequent test on a real road.


Sign in / Sign up

Export Citation Format

Share Document