scholarly journals Modelling of Flow Stress and Prediction of Workability by Processing Map for Hot Compression of 43CrNi Steel

2017 ◽  
Vol 57 (3) ◽  
pp. 497-505 ◽  
Author(s):  
Niranjan Kumar ◽  
Sanjeev Kumar ◽  
Sunil Kumar Rajput ◽  
Sumeer Kumar Nath
Author(s):  
Shibo Wen ◽  
Chaoyu Han ◽  
Bao Zhang ◽  
Yongfeng Liang ◽  
Feng Ye ◽  
...  

The flow behavior of Fe-6.5wt.%Si alloys during hot compression was investigated at temperatures 650–950 °C and strain rates 0.01–10 s-1. The results showed that the flow stress depended distinctly on the deformation temperatures and strain rates. The flow stress and work hardening rate increased with the decrease of temperature and the increase of strain rate. The activation energy under all the deformation conditions was calculated to be 410 kJ/mol. The constitutive equation with hyperbolic sine function and Zener–Hollomon parameter was developed. The peak stress, critical stress, and steady-state stress could be represented as σ=A+Bln(Z/A). Dynamic recrystallization occurred under the deformation conditions where the values of Z were lower than 1020. Processing maps were established to optimize the processing parameters. The power dissipation efficiency decreased in the high temperature and low strain rate region, increased in the high temperature and high strain rate region, and remained unchanged in other regions with the increase of true strain. Furthermore, the unstable area expanded. The true strain of 0.7 was the optimum reduction according to the processing map. Based on the analysis of surface quality, microstructures, and ordered structures, the optimized processing parameters for the Fe-6.5wt.%Si alloys were the temperature and strain rate of higher than 900 °C and 0.01–10 s-1, respectively, or 800–900 °C and lower than 0.4 s-1, respectively.


Author(s):  
W. M. Sherman ◽  
K. M. Vedula

The strength to weight ratio and oxidation resistance of NiAl make this ordered intermetallic, with some modifications, an attractive candidate to compete with many superalloys for high temperature applications. Recent studies have shown that the inherent brittleness of many polycrystalline intermetallics can be overcome by micro and macroalloying. It has also been found that the high temperature mechanical properties of NiAl can be enhanced through the addition of Nb by powder metallurgical techniques forming a dispersed second phase through interdiffusion in a polycrystalline matrix. A drop in the flow stress is observed however in a NiAl-2 at.% Nb alloy after 0.2 % strain during constant strain rate hot compression testing at 1025°C. The object of this investigation was to identify the second phase and to determine the cause of the flow stress drop.


2017 ◽  
Vol 898 ◽  
pp. 1134-1139
Author(s):  
Xue Fei Li ◽  
Ai Xue Sha ◽  
Xu Huang ◽  
Li Jun Huang

The hot deformation behavior of TC27 titanium alloy at the temperatures of 900-1150 °C and the strain rate of 0.01-10 s-1, the height reduction of 70%, was investigated in the isothermal compression test to identify the optimal extrusion parameters. The processing-map of TC27 titanium alloy was constructed based on dynamic materials model (DMM) and principle of Prasad*s instability. The conclusion shows that temperature and strain rate of deformation had a great influence on flow stress. At the beginning of deformation, the flow stress increased quickly with the augment of true strain and decreased slowly after flow stress reaching to the maximum value. Finally, flow stress tended to relatively stable condition. The flow stress decreased with the increase of temperature and increased with the increase of strain rate. The TC27 titanium alloy was sensitive to temperature and strain rate. Processing-map exhibited two peak efficiencies of power dissipation; one peak was 49% at 900°C/0.01 s-1, which dynamic recovery occured. The other peak was also 49% at 1050 °C /0.01s-1, which dynamic recrystallization occured in the domain. Besides, there were two instability areas in the processing-map which should be avoided during the extrusion. Therefore, in order to obtain the satisfactory properties, the parameters that 1050 °C and 0.01 s-1 were selected in the extrusion.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1042 ◽  
Author(s):  
Dao-chun Hu ◽  
Lei Wang ◽  
Hong-jun Wang

Multiple hot-compression tests were carried out on the 6082 aluminum (Al) alloy using a Gleeble-1500 thermal simulation testing machine. Data on flow stresses of the 6082 Al alloy at deformation temperatures of 623 to 773 K and strain rates from 0.01 to 5 s−1 were attained. Utilizing electron backscatter diffraction (EBSD) and a transmission electron microscope (TEM), the dynamic recrystallization behaviors of the 6082 Al alloy during hot compression in isothermal conditions were explored. With the test data, a hot-working processing map for the 6082 Al alloy (based on dynamic material modeling (DMM)) was drawn. Using the work-hardening rate, the initial critical strain causing dynamic recrystallization was determined, and an equation for the critical strain was constructed. A dynamic model for the dynamic recrystallization of the 6082 Al alloy was established using analyses and test results from the EBSD. The results showed that the safe processing zone (with a high efficiency of power dissipation) mainly corresponded to a zone with deformation temperatures of 703 to 763 K and strain rates of 0.1 to 0.3 s−1. The alloy was mainly subjected to continuous dynamic recrystallization in the formation of the zone. According to the hot-working processing map and an analysis of the microstructures, it is advised that the following technological parameters be selected for the 6082 Al alloy during hot-forming: a range of temperatures between 713 and 753 K and strain rates between 0.1 and 0.2 s−1.


2014 ◽  
Vol 1058 ◽  
pp. 165-169 ◽  
Author(s):  
Shi Ming Hao ◽  
Jing Pei Xie

The hot deformation behaviors of 30%SiCp/2024 aluminum alloy composites was studied by hot compression tests using Gleeble-1500 thermomechanical simulator at temperatures ranging from 350-500°C under strain rates of 0.01-10 s-1. The true stress-true strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the flow stress decreases with the increase of deformation temperature at a constant strain rate, and increases with the increase of strain rate at constant temperature, indicating that composite is a positive strain rate sensitive material. The flow stress behavior of composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 183.251 kJ/mol. The optimum hot working conditions for this material are suggested.


2007 ◽  
Vol 14 (5) ◽  
pp. 355-358
Author(s):  
Li-min WANG ◽  
Ning LIU ◽  
Li-qing CHEN ◽  
Xiang-hua LIU ◽  
Zheng-dong LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document