scholarly journals Age-Hardening Behaviors and Mechanical Properties of Fe-8%Ni-Ti Maraging Steels

1977 ◽  
Vol 63 (3) ◽  
pp. 496-504 ◽  
Author(s):  
Yoshinao MISHIMA ◽  
Tomoo SUZUKI ◽  
Minoru TANAKA
Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CONDULOY is a low beryllium-copper alloy containing about 1.5% nickel. It responds to age-hardening heat treatment for improved mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-11. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1953 ◽  
Vol 2 (12) ◽  

Abstract ALUMINUM 62S is a magnesium silicide type of wrought aluminum alloy with high resistance to fresh and salt water corrosion. It responds to age hardening heat treatment for high mechanical properties. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-11. Producer or source: Aluminum Company of America.


Alloy Digest ◽  
1969 ◽  
Vol 18 (4) ◽  

Abstract ALUMINUM 6062 is a magnesium silicide type of wrought aluminum alloy having good mechanical properties combined with high resistance to fresh and salt water corrosion. It responds to age-hardening heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive, shear, and bearing strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-186. Producer or source: Aluminum Company of America.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 790 ◽  
Author(s):  
Changping Tang ◽  
Kai Wu ◽  
Wenhui Liu ◽  
Di Feng ◽  
Xuezhao Wang ◽  
...  

The effects of Gd, Y content on the microstructure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy were investigated using hardness measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and uniaxial tensile testing. The results indicate that the alloys in as-cast condition mainly consist of α-Mg matrix and non-equilibrium eutectic Mg5.05RE (RE = Gd, Y, Nd). After solution treatment, the non-equilibrium eutectics dissolved into the matrix but some block shaped RE-rich particles were left at the grain boundaries and within grains. These particles are especially Y-rich and deteriorate the mechanical properties of the alloys. Both the compositions of the eutectic and the block shaped particle were independent of the total Gd, Y content of the alloys, but the number of the particles increases as the total Gd, Y content increases. The ultimate tensile strength increases as the total Gd, Y content decreases. A Mg-5.56Gd-3.38Y-1.11Nd-0.48Zr alloy with the highest ultimate tensile strength of 280 MPa and an elongation of 1.3% was fabricated. The high strength is attributed to the age hardening behavior and the decrease in block shaped particles.


2007 ◽  
Vol 546-549 ◽  
pp. 825-828 ◽  
Author(s):  
Man Jin ◽  
Jing Li ◽  
Guang Jie Shao

The precipitation behaviors and microstructures of nano-precipitates in AA6082 Al-Mg-Si alloy with and without Cu additions during heat treatment process were studied using hardness measurements, TEM, mechanical tests and 3DAP. Meanwhile, the softening process of 6082 alloys with Cu and without Cu, isothermally conditioned at 250°C, has also been investigated. It was found that the rate of age hardening, mechanical properties and thermal stability are higher for the Cu-containing alloy. The TEM and 3DAP observations showed that Q’ precipitates were existed after aged at 170°C for 8h in the alloy with Cu addition. Comparing the hardness, mechanical properties and thermal stability curves, it was concluded that the Q’ precipitates play a major role in improving the age hardening kinetics and properties of 6082 alloy with Cu addition.


Author(s):  
Amneesh Singla ◽  
Rajnish Garg ◽  
Mukesh Saxena

A 356 alloy reinforced with insitu V2O5 particles by using stir casting technique. The composites were produced by the addition of oxide particles in different weight percentage. The effect of oxide powder addition on microstructure and mechanical properties of produced composites were investigated. The effect of heat treatment on microstructure and mechanical properties were investigated by optical microscope, Microhardness tester and tension test. A significant improvement in hardness and tensile strength was revealed in the produced composite as compared to the base alloy. With the addition of oxide particles, the shape and size of eutectic Si changed which in turn affects the properties. It was observed that 2h solutionizing followed by the artificial aging was sufficient to make the structure homogenize and to produce the hardening precipitates. The improvement in the mechanical properties has been observed due to the age hardening precipitates in addition with refinement of insitu V2O5 particles.


Sign in / Sign up

Export Citation Format

Share Document