scholarly journals Effect of Minor Alloying Elements on the Mean Thermal Expansion Coefficient of Fe-36% Ni Invar Alloy

1994 ◽  
Vol 80 (12) ◽  
pp. 944-949 ◽  
Author(s):  
Masaomi TSUDA
2014 ◽  
Vol 787 ◽  
pp. 288-294 ◽  
Author(s):  
Wen Yi Peng ◽  
Neng Wu Yang ◽  
Gui Li Qu ◽  
Wei Wei Wang ◽  
Hai Ping Shi ◽  
...  

The effects of Ta additions (x=0, 0.5, 1.0, 1.5) in Fe60.5-xNi28Al11.5Tax(at.%) shape memory alloys on microstructure, thermal expansion, and pseudoelasticity of the aged alloys were investigated by metallurgical microscope, X-ray diffraction, SEM, EDS, high-temperature dilatometer spectrometer and pressure test machine. The results showed that with the increment of Ta additions, the γ' phase content increased which strengthened the austenitic matrix, meanwhile the compressive strength, the recoverable strain and the maximum strain of the aging state alloys decreased first and then increased, and the alloy’s residual strain firstly decreased and then increased. When the Ta content was 1.0 at.%, the alloy’s compressive strength, recoverable strain and plastic deformation strain reached its maximum value, 2.5Gpa, 14.4%, and 16.0% respectively. Thus, the alloy had the best pseudo-elastic at this time. The mean thermal expansion coefficient of the alloys decreased with Ta additions, when the Ta content was 1.0 at.%, the mean thermal expansion coefficient was at its minimum.


1973 ◽  
Vol 28 (9) ◽  
pp. 1539-1541 ◽  
Author(s):  
Bert Jansson ◽  
Carl-Axel Sjöblom

The linear thermal expansivity of polycrystalline silver iodide has been measured with a "Fused-Quartz Tube" apparatus in the temperature range 170 - 500 °C, the mean linear thermal expansion coefficient beingαt180=(2.607 + 0.00182 t) 10-5 (°C-1).An irregular change in the thermal expansivity was found close to 432 °C where an order-disorder transition has been reported.


2014 ◽  
Vol 804 ◽  
pp. 293-296 ◽  
Author(s):  
Tae Kwon Ha ◽  
Seok Hong Min

Thermodynamic equilibrium of Fe-36Ni-base Invar alloy containing C contents from 0.25 to 0.38 weight per cent during solidification has been investigated in this study. From the thermodynamic simulation using ThermoCalc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, i.e. (Nb, Mo, V)C and MoC, and M2C carbides. The MoC carbide was expected to be formed at relatively lower temperature below 770oC. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was Mo-rich non-equilibrium phase and could be resolved by the successive heat treatment. With increasing C contents from 0.25 to 0.38 wt.%, tensile strength of Invar alloy increased from 950 to 1100MPa after hot rolling and thermal expansion coefficient showed a trivial increase. Hot-rolled Invar alloy was successfully drawn at room temperature from 6 to 4 mm in diameter, which dramatically decreased thermal expansion coefficient.


2021 ◽  
Author(s):  
Arie van der Lee ◽  
Dan George Dumitrescu

Abstract The thermal expansion properties of crystalline organic compounds are investigated by data mining of the Cambridge Structural Database (CSD). The mean volumetric thermal expansion coefficient is 168.8 10-6K-1 and...


1989 ◽  
Vol 1989 (1) ◽  
pp. 3-5
Author(s):  
Frank E. Jones

ABSTRACT This paper discusses the limitations imposed on internal volumetric leak detection systems for underground gasoline storage tanks by uncertainty in the value of the thermal expansion coefficient for gasoline and uncertainties in measurements of the temperature of the gasoline. For leak detection or level sensing systems that are used to infer or measure volumetric leak rates, correction must be made to account for the expansion or contraction of the gasoline. An analysis is made of experimental determinations, in other work, of the density of samples of gasoline and calculated values of the thermal expansion coefficient. The data are divided according to three categories of gasoline: regular, unleaded, and premium. In each of these categories the estimate of the standard deviation of the thermal expansion coefficient is approximately 3 percent of the mean value. Examples are given of the magnitude of the apparent leak rate or error in leak rate due to uncertainties in the thermal expansion coefficient. In order to correct for expansion or contraction of the gasoline, the mean temperature of the entire quantity of the gasoline must be known. An error in mean temperature will result in an apparent leak rate or an error in leak rate. Examples are given of the magnitude of the apparent leak rate or error in leak rate.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


Sign in / Sign up

Export Citation Format

Share Document