Heart rate variability modifications in response to different types of exercise training in athletes

Author(s):  
Marco A. PERRONE ◽  
Maurizio VOLTERRANI ◽  
Vincenzo MANZI ◽  
Fabio BARCHIESI ◽  
Ferdinando IELLAMO
1999 ◽  
Vol 138 (3) ◽  
pp. 567-576 ◽  
Author(s):  
Phyllis K. Stein ◽  
Ali A. Ehsani ◽  
Peter P. Domitrovich ◽  
Robert E. Kleiger ◽  
Jeffrey N. Rottman

2021 ◽  
Vol 6 (5) ◽  
pp. 456-464
Author(s):  
A. P. Romanchuk ◽  
◽  
O. V. Guzii ◽  
A. V. Maglyovanyi ◽  
◽  
...  

The purpose of the study was a comparative analysis of sensorimotor reactions in highly trained athletes with different types of heart rate regulation. Materials and methods. 202 highly trained male athletes aged 22.6±2.8 years, who are engaged in acyclic sports – martial arts (karate, taekwondo, kickboxing, boxing, freestyle wrestling, Greco-Roman wrestling, judo, sambo) and games (water polo, soccer) were examined. The experience in sports was 10.3±3.1 years. All studies were conducted in the pre-competition period in the morning. Based on the study of heart rate variability in athletes, the type of heart rate regulation was determined. The basis for determining the types of regulation is the classification of heart rate variability indicators, taking into account their inclusion in certain limits. Heart rate variability indicators that reflect the dual-circuit model of heart rate regulation and are used for diagnosis include: total heart rate variability – total power (ms2), very low frequency (ms2), and stress-index (e.u.), which reflect the various chains of regulatory effects on heart rate. According to certain data types, 4 groups were formed. 1 group (type I) consisted of 42 athletes, 2 (type II) – 28 athletes, 3 (type III) – 88 athletes, 4 (type IV) – 44 athletes. The study of sensorimotor function was performed using the device KMM-3. Results and discussion. It is shown that the most balanced sensorimotor reactions are in athletes with type III regulation of heart rate. The most strain sensorimotor reactions are observed in type II regulation of heart rate, which is reflected in the pronounced central asymmetry of movement control with acceleration to the left against the background of deteriorating accuracy of right (due to flexors) and left (due to extensors) limbs, and the right-hand predominance. Sensorimotor reactions are quite strain in type IV of heart rate regulation, which is characterized by slow reactions at the synaptic and peripheral levels. In type I of heart rate regulation, the disorders observed at the central level of regulation relate to the asymmetry of short-term motor memory processes, which are significantly reduced in the left hemisphere. Conclusion. The study shows that the differences in the regulatory support of heart rate in highly qualified athletes are accompanied by characteristic differences in sensorimotor function. The latter can be useful for the diagnosis and further correction of conditions associated with the development of overexertion and overtraining


Engineering ◽  
2013 ◽  
Vol 05 (10) ◽  
pp. 310-313
Author(s):  
Ping Shi ◽  
Youfang Fang ◽  
Hongliu Yu

2011 ◽  
Vol 105 (7) ◽  
pp. 1054-1062 ◽  
Author(s):  
Carlos Augusto Camillo ◽  
Viviane de Moraes Laburu ◽  
Nicole Soriano Gonçalves ◽  
Vinícius Cavalheri ◽  
Fernanda Priore Tomasi ◽  
...  

2010 ◽  
Vol 220 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Bhagyalakshmi Sridhar ◽  
Nagaraja Haleagrahara ◽  
Ramesh Bhat ◽  
Anupama Bangra Kulur ◽  
Sridhar Avabratha ◽  
...  

1996 ◽  
Vol 27 (2) ◽  
pp. 146 ◽  
Author(s):  
Phyllis K. Stein ◽  
Jeffrey N. Rottman ◽  
Robert E. Kleiger ◽  
Ali A. Ehsani

2004 ◽  
Vol 147 (5) ◽  
pp. e8-e15 ◽  
Author(s):  
Radim Jurca ◽  
Timothy S Church ◽  
Gina M Morss ◽  
Alexander N Jordan ◽  
Conrad P Earnest

2000 ◽  
Vol 89 (5) ◽  
pp. 1825-1829 ◽  
Author(s):  
Antti Loimaala ◽  
Heikki Huikuri ◽  
Pekka Oja ◽  
Matti Pasanen ◽  
Ilkka Vuori

Endurance-trained athletes have increased heart rate variability (HRV), but it is not known whether exercise training improves the HRV and baroreflex sensitivity (BRS) in sedentary persons. We compared the effects of low- and high-intensity endurance training on resting heart rate, HRV, and BRS. The maximal oxygen uptake and endurance time increased significantly in the high-intensity group compared with the control group. Heart rate did not change significantly in the low-intensity group but decreased significantly in the high-intensity group (−6 beats/min, 95% confidence interval; −10 to −1 beats/min, exercise vs. control). No significant changes occurred in either the time or frequency domain measures of HRV or BRS in either of the exercise groups. Exercise training was not able to modify the cardiac vagal outflow in sedentary, middle-aged persons.


2020 ◽  
Vol 28 (1) ◽  
pp. 149-154
Author(s):  
Julia C. Orri ◽  
Elizabeth M. Hughes ◽  
Deepa G. Mistry ◽  
Antone Scala

The authors compared the linear and nonlinear heart rate variability dynamics from rest through maximal exercise in postmenopausal women who trained at either moderate or high intensities. The outcome variables included the RR triangular index, TINN, SD1, SD2, SD1/SD2, DFA α1, DFA α2, and α1/α2. Maximal exercise reduced SD1, SD2, DFA α1, DFA α2, α1/α2, RRTri, and TINN in both groups and increased SD1/SD2 (p < .05). Two minutes of active recovery produced significant increases in SD1, SD2, DFA α1, and TINN, compared with exercise in both groups (p < .0001). There was also a significant main effect between groups for RRTri during exercise recovery, with the moderate group achieving higher levels (p < .04). The authors have shown that both moderate and vigorous exercise training can lead to a healthy response to maximal exercise and recovery, with the moderate group having a slightly improved recovery in the triangular index.


2020 ◽  
Vol 45 (4) ◽  
pp. 431-436
Author(s):  
Danilo Fernandes da Silva ◽  
Shuhiba Mohammad ◽  
Kelly Ann Hutchinson ◽  
Kristi Bree Adamo

Traditionally, resting heart rate variability (rHRV) is measured for 10 min using the last 5 min for analyses (e.g., criterion period). It is unknown whether the measurement period can be shortened in pregnant women as there are currently no established standards. We aimed to compare shorter time segments (e.g., from the 1st to 10th minutes) of the parasympathetic index natural logarithm transformation of root mean square of successive R–R differences (Ln rMSSD) with the criterion period in pregnant and nonpregnant women. Twelve pregnant (age: 30.8 ± 3.4 years; gestational age: 20.1 ± 5.0 weeks) and 15 nonpregnant women (age: 29.8 ± 4.0 years) were included. rHRV was measured using a portable heart rate monitor for 10 min while sitting. Ln rMSSD difference/agreement between shorter time segments and criterion period was analyzed. The result observed between the 4th–5th minutes was the shortest time segment not different from/highly agreed with the criterion period in pregnant women (difference [95% confidence interval (CI)]: −0.10 [−0.22 to 0.02]/bias ± 1.96 × SD: −0.06 [−0.38 to 0.25]). In nonpregnant women, the 2nd–3rd-minute segment was the shortest with similar results (difference [95% CI]: −0.04 [−0.15 to 0.07]/bias ± 1.96 × SD: −0.03 [−0.39 to 0.32]). The Ln rMSSD was found to be stable from the 5th–10th minutes and the 3rd–10th minutes in pregnant and nonpregnant women, respectively. A shortened rHRV assessment can increase its applicability in clinical/exercise-training settings. Novelty Ln rMSSD can be measured for 5 min in pregnant women, with the last 1-min segment analyzed. The last 1-min segment from 3 min can be used for rHRV measurement in nonpregnant women. The shortened rHRV assessment can facilitate its applicability in clinical/exercise-training settings.


Sign in / Sign up

Export Citation Format

Share Document