scholarly journals Efficiency of Energy Transfer for TiO2 Nanoparticles with Fluorescein Dye

2019 ◽  
Vol 29 (4) ◽  
pp. 134
Author(s):  
Mahasin F. Hadi Al-Kadhemy ◽  
Asrar Abdulmunem ◽  
Husam Sabeeh Al-Arab

For different amount of masses of TiO2 nanoparticles in dye solution, absorption and Fluorescence profiles of the suspension for TiO2 nanoparticles with Fluorescein (F) in distilled water solution, has been explored. An absorption spectra enhancement were detected for changed amount of masses, which specifies that the doping with TiO2 nanoparticles has a major effect on the dye absorption spectra. Contrarily, all fluorescence emission spectra for the dye, were quenched as TiO2 nanoparticles amount of masses increases because of Förster resonance energy transfer (FRET).

F1000Research ◽  
2019 ◽  
Vol 2 ◽  
pp. 82
Author(s):  
Saurabh Gautam ◽  
Munishwar N Gupta

Direct comparison between fluorescence spectra of a sample in solution and solid state form is valuable to monitor the changes in protein structure when it is “dried” or immobilized on a solid surface (for biocatalysis or sensor applications). We describe here a simple method for recording fluorescence emission spectra of protein powders without using any dedicated accessory for solid samples in a high-throughput format. The 96-well plate used in our studies, was coated black from all the sides and the excitation and emission paths are identical and are from the top of the well. These two features minimize scatter and provide fairly noise free spectra. Even then the fluorescence intensity may be dependent upon many factors such as the extent of protein aggregation, morphology and sizes of the protein particles. Hence, (changes in) λmax emission may be a more reliable metric in the case of fluorescence spectra of proteins in the solid state. However, any large changes in the intensity could indicate changes in the microenvironment of the fluorophore. The fluorescence emission spectra were blue-shifted (4 to 9 nm), showed an increase in the intensity for different proteins studied upon lyophilization, and were similar to what has been reported by others using available commercial accessories for solid state samples. After validating that our method worked just as well as the dedicated accessories, we applied the method to compare the fluorescence emission spectra of α-chymotrypsin in solution, precipitated form, and the lyophilized powder form. We further examined the fluorescence emission spectra of green fluorescent protein (GFP) in solution and solid form. We also analyzed fluorescence resonance energy transfer (FRET) between tryptophan (Trp57) and the cyclic chromophore of GFP. These findings pointed towards the change in the microenvironment around the cyclic chromophore in GFP upon lyophilization.


Author(s):  
Yuichi Niibori ◽  
Masayuki Narita ◽  
Akira Kirishima ◽  
Taiji Chida ◽  
Hitoshi Mimura

Calcium silicate hydrate (CSH) is a main component of cement-based material required for constructing the geological repository. As in many countries, since the repository in Japan is constructed below water table, we must consider the interaction of radionuclide with cement materials altered around the repository after the backfill. Using fluorescence emission spectra, so far, the authors have investigated the interaction of Eu(III) (as a chemical analog of Am(III)) with CSH gels formed with no dried process, considering a condition saturated with groundwater. However, in such fluorescence emission behaviors, a deexcitation process of OH vibrators of light water and a quenching effect caused by Eu-Eu energy transfer between Eu atoms incorporated in the CSH gel must be considered. This study examined the fluorescence emission behavior of Eu(III) sorbed on CSH gels formed with no dried process, by using La(III) (non-fluorescent ions) as a diluent of Eu(III). Furthermore, the CSH samples were synthesized with CaO, SiO2, and heavy water (D2O) as a solvent in order to avoid the obvious deexcitation process of OH vibrators of light water. This study prepared CSH samples with the Ca/Si ratio set to 1.6, 1.0, and 0.5. A 1 mM solution of a given combination of Eu(III) and La(III) (Eu(III) content: 100%, 67%, 50% or 33%) was added into CSH gel sample. The contact time-period of the CSH gel with the Eu(III)/La(III) solution was set to 60 days. In the results, the peak around 618 nm was split into two peaks of 613 nm and 622 nm in the cases of Ca/Si = 1.0 and 1.6. Then, the peak of 613 nm decreased with increment of Eu(III)/La(III) ratio. This means that the relative intensity of 613 nm is useful to quantify the amount of Eu(III) incorporated in CSH gel. Besides, the intensity peak of 584 nm decayed with increment of Eu/La ratio, suggesting a quenching effect due to Eu-Eu energy transfer. However, the decay behavior of the fluorescence emission did not depend on the Eu/La concentration ratio. That is, such a quenching effect is neglectable. Additionally, the low Ca/Si ratio samples underwent slow attenuation of fluorescence and showed profiles similar to those of high Ca/Si ratio samples. Therefore, low Ca/Si ratio samples also include the reaction forming a complex on the surface of CSH gel with Eu(III). In other words, even if Ca/Si ratio is lower than 1.0, CSH gels would retard the migration of radionuclides released from the repository.


RSC Advances ◽  
2014 ◽  
Vol 4 (54) ◽  
pp. 28471-28480 ◽  
Author(s):  
Atiya N. Jordan ◽  
Noureen Siraj ◽  
Susmita Das ◽  
Isiah M. Warner

Mixtures of GUMBOS were used to form binary nanomaterials with tunable emission spectra due to Förster resonance energy transfer (FRET).


2008 ◽  
Vol 6 (suppl_1) ◽  
Author(s):  
A.D Elder ◽  
A Domin ◽  
G.S Kaminski Schierle ◽  
C Lindon ◽  
J Pines ◽  
...  

Fluorescence detection of acceptor molecules sensitized by Förster resonance energy transfer (FRET) is a powerful method to study protein interactions in living cells. The method requires correction for donor spectral bleed-through and acceptor cross-excitation as well as the correct normalization of signals to account for varying fluorophore concentrations and imaging parameters. In this paper, we review different methods for FRET signal normalization and then present a rigorous model for sensitized emission measurements, which is both intuitive to understand and practical to apply. The method is validated by comparison with the acceptor photobleaching and donor lifetime-imaging techniques in live cell samples containing EYFP and ECFP tandem constructs exhibiting known amounts of FRET. By varying the stoichiometry of interaction in a controlled fashion, we show that information on the fractions of interacting donors and acceptors can be recovered. Furthermore, the method is tested by performing measurements on different microscopy platforms in both widefield and confocal imaging modes to show that signals recovered under different imaging conditions are in quantitative agreement. Finally, the method is applied in the study of dynamic interactions in the cyclin–cdk family of proteins in live cells. By normalizing the obtained signals for both acceptor and donor concentrations and using a FRET exhibiting control construct for calibration, stoichiometric changes in these interactions could be visualized in real time. The paper is written to be of practical use to researchers interested in performing sensitized emission measurements. The correct interpretation of the retrieved signals in a biological context is emphasized, and guidelines are given for the practical application of the developed algorithms.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2909 ◽  
Author(s):  
Anirban Samanta ◽  
Igor L. Medintz

Bioluminescence resonance energy transfer (BRET) is the non-radiative transfer of energy from a bioluminescent protein donor to a fluorophore acceptor. It shares all the formalism of Förster resonance energy transfer (FRET) but differs in one key aspect: that the excited donor here is produced by biochemical means and not by an external illumination. Often the choice of BRET source is the bioluminescent protein Renilla luciferase, which catalyzes the oxidation of a substrate, typically coelenterazine, producing an oxidized product in its electronic excited state that, in turn, couples with a proximal fluorophore resulting in a fluorescence emission from the acceptor. The acceptors pertinent to this discussion are semiconductor quantum dots (QDs), which offer some unrivalled photophysical properties. Amongst other advantages, the QD’s large Stokes shift is particularly advantageous as it allows easy and accurate deconstruction of acceptor signal, which is difficult to attain using organic dyes or fluorescent proteins. QD-BRET systems are gaining popularity in non-invasive bioimaging and as probes for biosensing as they don’t require external optical illumination, which dramatically improves the signal-to-noise ratio by avoiding background auto-fluorescence. Despite the additional advantages such systems offer, there are challenges lying ahead that need to be addressed before they are utilized for translational types of research.


2021 ◽  
Vol 2 (4) ◽  
pp. 564-575
Author(s):  
Amanda Jalihal ◽  
Thuy Le ◽  
Samantha Macchi ◽  
Hannah Krehbiel ◽  
Mujeebat Bashiru ◽  
...  

Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820−, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820− absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications.


2004 ◽  
Vol 03 (03) ◽  
pp. 273-280
Author(s):  
QI-DAN CHEN ◽  
ZHANG-BI LIN ◽  
XING-GUANG SU ◽  
HAO ZHANG ◽  
XIAO-HONG HE ◽  
...  

3-Mercaptopropyl acid-capped quantum dots (QDs) synthesized in aqueous solution were coupled to avidin-sulforhodamine, also named avidin-Texas red (ATR), via electrostatic attraction. An intensity reduction in the fluorescence emission spectrum of QDs and an enhanced fluorescence intensity of the dye were observed on account of fluorescence resonance energy transfer from the QD donors to the dye acceptors. In addition, the fluorescence characteristics of the QD-ATR conjugates were strongly-related to the quantity of ATR, pH value and ionic strength.


1994 ◽  
Vol 48 (8) ◽  
pp. 977-984 ◽  
Author(s):  
Xin Wang ◽  
Oliver C. Mullins

The fluorescence lifetimes of a series of crude oils at various concentrations have been measured for UV-visible excitation and emission wavelengths. The lifetime results are compared with fluorescence spectra and quantum yields for these solutions. The concentration effects of energy transfer and quenching are large and result in a significant decrease in fluorescence lifetimes for high concentrations and for heavy crude oils. Thus, radiationless processes dominate in energy transfer. At high concentrations, energy transfer produces large red shifts in fluorescence emission spectra, while quenching produces a large reduction in quantum yields. Stern-Volmer analyses of lifetime and quenching data show a linear dependence of energy transfer and quenching rates on concentration. The rate constants are consistent with collisions which are very efficient at energy transfer and quenching, and the rates of these two processes are comparable.


Sign in / Sign up

Export Citation Format

Share Document