scholarly journals Recent Advances in Process Development of Antiviral Agents Targeting the Influenza Virus: Amantadine-RemantadineDerived Pharmaceutical Agents

2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Pathy KS
2015 ◽  
Vol 93 (5) ◽  
pp. 492-501 ◽  
Author(s):  
Tomas Hudlicky

This short review summarizes our work on the process development for the synthesis of buprenorphine, naltrexone, naloxone, and nalbuphine from naturally occurring opiates such as thebaine and oripavine. Several new methods for N-demethylation of morphinans have been developed during the pursuit of this research. The article traces the evolution of various approaches and provides a comparison for overall efficiency.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 269 ◽  
Author(s):  
Karin Hellner ◽  
Lucy Dorrell

High-risk human papillomaviruses (hrHPV) are responsible for anogenital and oropharyngeal cancers, which together account for at least 5% of cancers worldwide. Industrialised nations have benefitted from highly effective screening for the prevention of cervical cancer in recent decades, yet this vital intervention remains inaccessible to millions of women in low- and middle-income countries (LMICs), who bear the greatest burden of HPV disease. While there is an urgent need to increase investment in basic health infrastructure and rollout of prophylactic vaccination, there are now unprecedented opportunities to exploit recent scientific and technological advances in screening and treatment of pre-invasive hrHPV lesions and to adapt them for delivery at scale in resource-limited settings. In addition, non-surgical approaches to the treatment of cervical intraepithelial neoplasia and other hrHPV lesions are showing encouraging results in clinical trials of therapeutic vaccines and antiviral agents. Finally, the use of next-generation sequencing to characterise the vaginal microbial environment is beginning to shed light on host factors that may influence the natural history of HPV infections. In this article, we focus on recent advances in these areas and discuss their potential for impact on HPV disease.


2021 ◽  
Author(s):  
Christian Marco Hadi Nugroho ◽  
Ryan Septa Kurnia ◽  
Simson Tarigan ◽  
Otto Sahat Martua Silaen ◽  
Silvia Tri Widyaningtyas ◽  
...  

Abstract Study on sialidases as antiviral agents has been widely performed, but many types of sialidase had not been tested for their antiviral activity. One of such sialidase is the NanB sialidase of Pasteurella multocida, which has never been isolated for further study. In this study, the activity of NanB sialidase was investigated in silico by docking the NanB sialidase of Pasteurella multocida to the Neu5Acα(2-6)Gal ligand. Additionally, some local isolates of Pasteurella multocida, which had the NanB gene were screened, and the proteins were isolated for further testing regarding their activity in hydrolyzing Neu5Acα(2-6)Gal. In silico studies showed that the NanB sialidase possesses an exceptional affinity towards forming a protein-ligand complex with Neu5Acα(2-6)Gal. This was further confirmed by showing that a dose of 0.258 U/ml (100%) NanB sialidase of Pasteurella multocida B018 can hydrolyze up to 44.28% of Neu5Acα(2-6)Gal in chicken red blood cells and 81.95% in rabbit red blood cells. This study suggested that the NanB sialidase of Pasteurella multocida B018 has a potent antiviral activity that can inhibit avian influenza virus infection.


Marine Drugs ◽  
2020 ◽  
Vol 18 (11) ◽  
pp. 543
Author(s):  
Annick Barre ◽  
Els J.M. Van Damme ◽  
Mathias Simplicien ◽  
Hervé Benoist ◽  
Pierre Rougé

Seaweed lectins, especially high-mannose-specific lectins from red algae, have been identified as potential antiviral agents that are capable of blocking the replication of various enveloped viruses like influenza virus, herpes virus, and HIV-1 in vitro. Their antiviral activity depends on the recognition of glycoprotein receptors on the surface of sensitive host cells—in particular, hemagglutinin for influenza virus or gp120 for HIV-1, which in turn triggers fusion events, allowing the entry of the viral genome into the cells and its subsequent replication. The diversity of glycans present on the S-glycoproteins forming the spikes covering the SARS-CoV-2 envelope, essentially complex type N-glycans and high-mannose type N-glycans, suggests that high-mannose-specific seaweed lectins are particularly well adapted as glycan probes for coronaviruses. This review presents a detailed study of the carbohydrate-binding specificity of high-mannose-specific seaweed lectins, demonstrating their potential to be used as specific glycan probes for coronaviruses, as well as the biomedical interest for both the detection and immobilization of SARS-CoV-2 to avoid shedding of the virus into the environment. The use of these seaweed lectins as replication blockers for SARS-CoV-2 is also discussed.


1992 ◽  
Vol 36 (2) ◽  
pp. 473-476 ◽  
Author(s):  
R W Sidwell ◽  
J H Huffman ◽  
J Gilbert ◽  
B Moscon ◽  
G Pedersen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document