Recent advances in process development for opiate-derived pharmaceutical agents

2015 ◽  
Vol 93 (5) ◽  
pp. 492-501 ◽  
Author(s):  
Tomas Hudlicky

This short review summarizes our work on the process development for the synthesis of buprenorphine, naltrexone, naloxone, and nalbuphine from naturally occurring opiates such as thebaine and oripavine. Several new methods for N-demethylation of morphinans have been developed during the pursuit of this research. The article traces the evolution of various approaches and provides a comparison for overall efficiency.

Synthesis ◽  
2018 ◽  
Vol 50 (06) ◽  
pp. 1228-1236 ◽  
Author(s):  
Robert Britton ◽  
Michael Meanwell

Fluorination at heterobenzylic positions can have a significant impact on basicity, lipophilicity, and metabolism of drug leads. As a consequence, the development of new methods to access heterobenzylic fluorides has particular relevance to medicinal chemistry. This short review provides a survey of common methods used to synthesize heterobenzylic fluorides and includes fluoride displacement reactions of previously functionalized molecules (e.g., deoxyfluorination and halide exchange) and electrophilic fluorination of resonance-stabilized heterobenzylic anions. In addition, recent advances in the direct fluorination of heterobenzylic C(sp3)–H bonds and monofluoromethylation of heterocyclic C(sp2)–H bonds are presented.1 Introduction2 Heterobenzylic Fluorides2.1 Deoxyfluorination2.2 Halide Exchange2.3 Electrophilic Fluorination of Heterobenzylic Anions2.4 Late Stage C–H Bond Fluorination2.5 Monofluoromethylation of C(sp2)–H Bonds3 Conclusions


2020 ◽  
Vol 92 (5) ◽  
pp. 751-765 ◽  
Author(s):  
Alexander Fawcett

AbstractBicyclo[1.1.0]- and 1-azabicyclo[1.1.0]butanes are structurally unique compounds that exhibit diverse chemistry. Bicyclo[1.1.0]butane is a four-membered carbocycle with a bridging C(1)-C(3) bond and 1-azabicyclo[1.1.0]butane is an analog of bicyclo[1.1.0]butane featuring a nitrogen atom at one bridgehead. These structures are highly strained, allowing them to participate in a range of strain-releasing reactions which typically cleave the central, strained bond to deliver cyclobutanes or azetidines. However, despite these molecules being discovered in the 1950s and 1960s, and possessing a myriad of alluring chemical features, the chemistry and applications of bicyclo[1.1.0]- and 1-azabicyclo[1.1.0]butanes remain underexplored. In the past 5 years, there has been a resurgent interest in their chemistry driven by the pharmaceutical industry’s increasing desire for new methods to access cyclobutanes and azetidines. This short review intends to provide a timely summary of the most recent developments in the chemistry of bicyclo[1.1.0]- and 1-azabicyclo[1.1.0]butane to highlight the diverse chemistry they can access, their value as synthetic precursors to cyclobutanes and azetidines, and to identify areas for future research.


Author(s):  
Shukla PK ◽  
Singh MP ◽  
Patel R

Indole and its derivatives have engaged a unique place in the chemistry of nitrogen heterocyclic compounds. The recognition of the plant growthhormone, heteroauxin, the significant amino acids, tryptamine & tryptophan and anti-inflammatory drug, indomethacine are the imperativederivatives of indole which have added stimulus to this review work. Isatin (1H-indole-2,3-dione), an indole derivative of plant origin. Althoughit is a naturally occurring compound, but was synthesized by Erdmann and Laurent in 1840 before it was found in nature. Isatin is a versatileprecursor for many biologically active molecules and its diversified nature makes it a versatile substrate for further modifications. It is concernedin many pharmacological activities like anti-malarial, antiviral, anti-allergic, antimicrobial etc; isatin and its derivatives have been also found todemonstrate promising outcomes against various cancer cell lines. This review provides a brief overview on the recent advances and futureperspectives on chemistry and biological aspects of isatin and its derivatives reported in the recent past.


Author(s):  
Shunan Zhang ◽  
Zhaoxuan Wu ◽  
Xiufang Liu ◽  
Kaimin Hua ◽  
Zilong Shao ◽  
...  

Author(s):  
Liang Wang ◽  
Chongyang Zhang ◽  
Jianhua Zhang ◽  
Zhiming Rao ◽  
Xueming Xu ◽  
...  

ε-poly-L-lysine (ε-PL) is a naturally occurring poly(amino acid) of varying polymerization degree, which possesses excellent antimicrobial activity and has been widely used in food and pharmaceutical industries. To provide new perspectives from recent advances, this review compares several conventional and advanced strategies for the discovery of wild strains and development of high-producing strains, including isolation and culture-based traditional methods as well as genome mining and directed evolution. We also summarize process engineering approaches for improving production, including optimization of environmental conditions and utilization of industrial waste. Then, efficient downstream purification methods are described, including their drawbacks, followed by the brief introductions of proposed antimicrobial mechanisms of ε-PL and its recent applications. Finally, we discuss persistent challenges and future perspectives for the commercialization of ε-PL.


2021 ◽  
Vol 7 ◽  
Author(s):  
Qijie Wu ◽  
Kewei Shu ◽  
Lili Sun ◽  
Haihua Wang

High-performance electrolyte is still a roadblock for the development of rechargeable magnesium (Mg) batteries. Grignard-type electrolytes were once the only choice in the early stage of rechargeable Mg batteries research. However, due to their nucleophilic nature and high reactivity, Grignard-type electrolytes have inherent safety issues and low oxidation stability, which restrict the development of rechargeable Mg batteries in terms of practical application. Recently, emerging novel Mg battery systems such as Mg-S, Mg-O2/air batteries also require non‐nucleophilic electrolytes with high oxidation stability. This short review summarizes recent advances in non‐nucleophilic Mg electrolytes and aims to provide insights into electrochemical properties and active Mg ion structure of such electrolytes.


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2417 ◽  
Author(s):  
Jong-Wha Jung ◽  
Nam-Jung Kim ◽  
Hwayoung Yun ◽  
Young Han

4-Arylcoumarins (4-aryl-2H-1-benzopyran-2-one), also known as neoflavones, comprise a minor subclass of naturally occurring flavonoids. Because of their broad-spectrum biological activities, arylcoumarins have been attracting the attention of the organic and medicinal chemistry communities, and are considered as an important privileged scaffold. Since the development of Pechmann condensation, a classical acid-catalyzed condensation between phenol and β-keto-carboxylic acid, several versatile and efficient synthetic approaches for 4-arylcoumarins have been reported. This review summarizes recent advances in the synthesis of the 4-arylcoumarin scaffold by classifying them based on the final bond-formation type. In particular, synthetic methods executed under mild and highly efficient conditions, such as solvent-free reactions and transition metal catalysis, are highlighted.


Synthesis ◽  
2021 ◽  
Author(s):  
Leonid Fershtat ◽  
Fedor Teslenko

Five-membered heterocyclic N-oxides attracted special attention due to their strong application potential in medicinal chemistry and advanced materials science. In this regard, novel methods for their synthesis and functionalization are constantly required. In this short review, recent state-of-the-art achievements in the chemistry of isoxazoline N-oxides, 1,2,3-triazole 1-oxides and 1,2,5-oxadiazole 2-oxides are briefly summarized. Main routes to transition-metal-catalyzed and metal-free functionalization protocols along with mechanistic considerations are outlined. Transformation patterns of the hetarene N-oxide rings as precursors to other nitrogen heterocyclic systems are also presented.


Synthesis ◽  
2021 ◽  
Author(s):  
David Whalley ◽  
Michael Greaney

The Smiles rearrangement has undergone a renaissance in recent years providing new avenues for non-canonical arylation techniques in both the radical and polar regimes. This Short Review will discuss recent applications of the reaction (from 2017 onwards), including its relevance to areas such as heterocycle synthesis, functionalisation of alkenes and alkynes as well as glimpses at new directions for the field.


Sign in / Sign up

Export Citation Format

Share Document