Preparation and electrochemical characterisation of anion exchange polymer coated electrodes towards sensing applications

2021 ◽  
Author(s):  
◽  
Matthew J. Rees

This thesis concerns with the investigation of electrochemical processes at the electrode interface, using different electrode materials coated with anion exchange polymers. There is an ongoing interest in analytical chemistry, with focus on developing sensors with high sensitivity and selectivity to detect specific analytes, sensors can be fabricated to enhance these characteristics. Anion conducting polymers usually used in Anion exchange membrane fuel cells (AEMFC), which gives the potential to use non-platinum based electrocatalysts in its operation, are useful in this respect in electroanalytical applications, as their selectivity towards negative species in solution allow their preconcentration at the electrode surface. Two polymers were used in this project, Hexamethyl-p-terphenyl poly(benzimidazolium) - HMT-PMBI and poly(ethylene-co-tetrafluoroethylene)-g-poly(benzyl-trimethylammonium chloride) – BTMA. The former was utilized by dropcasting solution onto glassy carbon electrode (GCE) and layering indium tin oxide substrate (ITO) with Langmuir Schaefer (LS) films and BTMA was used to fabricate a modified carbon paste electrode. Amperometric sensors are very attractive compared to other analytical methods such as, atomic absorption spectrometry (AAS) and molecular absorption spectrometry (MAS) because of their potential low cost and the possibility to perform measurements in situ using portable devices. Applications for these devices can be utilised in many industries, including medical, environmental and food. A common example of a commercial sensor is the blood glucose sensor, which uses the enzyme glucose oxidase to break blood glucose down. To investigate the basic electrochemical properties of the different electrodes, redox mediators were used. These oxidation and reduction reactions agree with the theory i.e. Randles – Sevcik equation and the calculation of the apparent diffusion coefficient. This was calculated to be 10-9 – 10-10 for HMT-PMBI coated electrode. The significance of this is, the smaller the diffusion coefficient the slower the rate of diffusion through a substance.In order to ascertain the suitability of the as-prepared ionomer films and paste for electrocatalytic sensing studies, investigations into the electrochemical behavior of HMT-PMBI and BTMA towards the detection of mercury (Hg), uric acid (UA) and ascorbic acid (AA). These have been selected to study because they are negative species, and hence the polymer is positive which will have selectivity towards these. All modified electrodes show attractive limit of detections for UA and AA i.e. in the range of harmful levels in blood and urine – over 530 µM in females and 619 µM in males for UA, and sensitives compared to selected peer reviewed journals which have also used sensors for the detection of analytes in this project. Where the detection limits range from 0.05 – 15 µM81-95 for UA and 0.002 – 300 µM for AA80-87,114-120. Compared to this work where the detection limits for BTMA-CPE range between 0.84 – 9.5 μM for UA, 1.43 – 50 μM for AA, the HMT-PMBI GCE range between 6 – 18 μM for UA, 17 – 81 μM for AA and the 20L HMT-PMBI ITO range between 2.2 – 26 μM for UA, 16.9 – 19.1 μM for AA.

2022 ◽  
Vol 11 (1) ◽  
pp. 15-20
Author(s):  
Parviz Saeidi ◽  
Bernhard Jakoby ◽  
Gerald Pühringer ◽  
Andreas Tortschanoff ◽  
Gerald Stocker ◽  
...  

Abstract. Plasmonic waveguides have attracted much attention owing to the associated high field intensity at the metal–dielectric interface and their ability to confine the modes at the nanometer scale. At the same time, they suffer from relatively high propagation loss, which is due to the presence of metal. Several alternative materials have been introduced to replace noble metals, such as transparent conductive oxides (TCOs). A particularly popular TCO is indium tin oxide (ITO), which is compatible with standard microelectromechanical systems (MEMS) technology. In this work, the feasibility of ITO as an alternative plasmonic material is investigated for infrared absorption sensing applications: we numerically design and optimize an ITO-based plasmonic slot waveguide for a wavelength of 4.26 µm, which is the absorption line of CO2. Our optimization is based on a figure of merit (FOM), which is defined as the confinement factor divided by the imaginary part of the effective mode index (i.e., the intrinsic damping of the mode). The obtained optimal FOM is 3.2, which corresponds to 9 µm and 49 % for the propagation length (characterizing the intrinsic damping) and the confinement factor, respectively.


Transparent conducting electrodes (TCEs) play a vital role for the fabrication of solar cells and pivoted almost 50% of the total cost. Recently several materials have been identified as TCEs in solar cell applications. Still, indium tin oxide (ITO) based TCEs have dominated the market due to their outstanding optical transparency and electrical conductivity. However, inadequate availability of indium has increased the price of ITO based TCEs, which attracts the researchers to find alternative materials to make solar technology economical. In this regard, various kinds of conducting materials are available and synthesized worldwide with high electrical conductivity and optical transparency in order to find alternative to ITO based electrodes. Especially, new generation nanomaterials have opened a new window for the fabrication of cost effective TCEs. Carbon nanomaterials such as graphene, carbon nanotubes (CNTs), metal nanowires (MNWs) and metal mesh (MMs) based electrodes especially attracted the scientific community for fabrication of low cost photovoltaic devices. In addition to it, various conducting polymers such as poly (3, 4-ethylene dioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) based TCEs have also showed their candidacy as an alternative to ITO based TCEs. Thus, the present chapter gives an overview on materials available for the TCEs and their possible use in the field of solar cell technology


2015 ◽  
Vol 228 ◽  
pp. 299-304
Author(s):  
Magdalena Popczyk ◽  
B. Łosiewicz ◽  
Eugeniusz Łągiewka ◽  
A. Budniok

The Ni-P, Ni-Co-P and Ni-P+Co coatings were obtained in galvanostatic conditions at the current density ofjdep= -200 mA cm-2. A stereoscopic microscope was used for surface morphology characterization of the coatings. The X-ray diffraction (XRD) method was used to determine phase composition of the coatings and the atomic absorption spectrometry (AAS) was applied to specify their chemical composition. The behavior of the obtained coatings was investigated in the process of hydrogen evolution reaction (HER) from 5 M KOH using steady-state polarization and electrochemical impedance spectroscopy (EIS) methods. It was found that introduction into Ni-P amorphous matrix powder of cobalt produced porous electrode materials which could be used for the HER.


2018 ◽  
Vol 2 (3) ◽  
pp. 33
Author(s):  
Masato Tominaga ◽  
Motofumi Tsutsui ◽  
Takuya Takatori

Fast electron transfer between laccase (Lac) and single-walled carbon nanotubes (SWCNTs) can be achieved at a cholate-modified SWCNT interface. Furthermore, the catalytic reduction of O2 starts at a high potential, close to the equilibrium redox potential of the O2/H2O couple. A sodium cholate (SC)-modified electrode interface provides suitable conditions for Lac direct bioelectrocatalysis. In the present study, the SC promotional effect in Lac direct bioelectrocatalysis was investigated using various types of electrode materials. The fully hydrophilic surface of indium tin oxide and an Au electrode surface did not show a SC promotional effect, because SC did not bind to these surfaces. A carbon surface with a large number of defects was unsuitable for SC binding because of hydrophilic functional groups at the defect sites. Carbon surfaces with few defects, for example, basal-plane highly oriented pyrolytic graphite (HOPG), gave a SC promotional effect.


Sign in / Sign up

Export Citation Format

Share Document