Propagation of Electromagnetic Waves In the On-Chip Power Tracks

Author(s):  
Cexing Wang ◽  
Tao Su
2017 ◽  
Author(s):  
Evgeni A. Bezus ◽  
Vladimir V. Podlipnov ◽  
Andrey A. Morozov ◽  
Leonid L. Doskolovich

Author(s):  
Carlos Escobedo ◽  
Fatemeh Eftekhari ◽  
Jacqueline Ferreira ◽  
Paul Wood ◽  
Reuven Gordon ◽  
...  

Arrays of nanoholes in metal films present several opportunities as surface based sensors in lab-on-chip systems. Metallic nanohole arrays support surface electromagnetic waves that enable enhanced transmission through the holes and have been harnessed for chemical and biological sensing. Nanohole array based sensing performed to date has involved nanoholes that end shortly beyond the metallic film layer on a substrate such as glass. Such dead-ended holes fail to harness the potential of through-hole nanohole arrays including enhanced transport of reactants to the active area and a solution sieving action that is unique among surface-based sensing methods. In this work we investigate the potential of a flow-through-array sensing format.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
J. W. Rao ◽  
P. C. Xu ◽  
Y. S. Gui ◽  
Y. P. Wang ◽  
Y. Yang ◽  
...  

AbstractThe perfect absorption of electromagnetic waves has promoted many applications, including photovoltaics, radar cloaking, and molecular detection. Unlike conventional methods of critical coupling that require asymmetric boundaries or coherent perfect absorption that require multiple coherent incident beams, here we demonstrate single-beam perfect absorption in an on-chip cavity magnonic device without breaking its boundary symmetry. By exploiting magnon-mediated interference between two internal channels, both reflection and transmission of our device can be suppressed to zero, resulting in magnon-induced nearly perfect absorption (MIPA). Such interference can be tuned by the strength and direction of an external magnetic field, thus showing versatile controllability. Furthermore, the same multi-channel interference responsible for MIPA also produces level attraction (LA)-like hybridization between a cavity magnon polariton mode and a cavity photon mode, demonstrating that LA-like hybridization can be surprisingly realized in a coherently coupled system.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012037
Author(s):  
L L Doskolovich ◽  
E A Bezus ◽  
D A Bykov

Abstract We propose and theoretically and numerically investigate integrated high-contrast diffraction gratings for surface electromagnetic waves. We consider two platforms for the on-chip gratings: surface plasmon-polaritons propagating along metal-dielectric interfaces and Bloch surface waves propagating along interfaces of photonic crystals. We demonstrate that the optical properties of the studied integrated gratings are qualitatively close to the ones of the conventional high-contrast diffraction gratings. If the “parasitic” out-of-plane scattering is suppressed, the reflectance and transmittance of the on-chip gratings are not only qualitatively, but also quantitatively close to the corresponding values of the conventional “free-space” gratings. The obtained results may find application in novel integrated optical circuits.


1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


Author(s):  
Anthony S-Y Leong ◽  
David W Gove

Microwaves (MW) are electromagnetic waves which are commonly generated at a frequency of 2.45 GHz. When dipolar molecules such as water, the polar side chains of proteins and other molecules with an uneven distribution of electrical charge are exposed to such non-ionizing radiation, they oscillate through 180° at a rate of 2,450 million cycles/s. This rapid kinetic movement results in accelerated chemical reactions and produces instantaneous heat. MWs have recently been applied to a wide range of procedures for light microscopy. MWs generated by domestic ovens have been used as a primary method of tissue fixation, it has been applied to the various stages of tissue processing as well as to a wide variety of staining procedures. This use of MWs has not only resulted in drastic reductions in the time required for tissue fixation, processing and staining, but have also produced better cytologic images in cryostat sections, and more importantly, have resulted in better preservation of cellular antigens.


2020 ◽  
Vol 477 (14) ◽  
pp. 2679-2696
Author(s):  
Riddhi Trivedi ◽  
Kalyani Barve

The intestinal microbial flora has risen to be one of the important etiological factors in the development of diseases like colorectal cancer, obesity, diabetes, inflammatory bowel disease, anxiety and Parkinson's. The emergence of the association between bacterial flora and lungs led to the discovery of the gut–lung axis. Dysbiosis of several species of colonic bacteria such as Firmicutes and Bacteroidetes and transfer of these bacteria from gut to lungs via lymphatic and systemic circulation are associated with several respiratory diseases such as lung cancer, asthma, tuberculosis, cystic fibrosis, etc. Current therapies for dysbiosis include use of probiotics, prebiotics and synbiotics to restore the balance between various species of beneficial bacteria. Various approaches like nanotechnology and microencapsulation have been explored to increase the permeability and viability of probiotics in the body. The need of the day is comprehensive study of mechanisms behind dysbiosis, translocation of microbiota from gut to lung through various channels and new technology for evaluating treatment to correct this dysbiosis which in turn can be used to manage various respiratory diseases. Microfluidics and organ on chip model are emerging technologies that can satisfy these needs. This review gives an overview of colonic commensals in lung pathology and novel systems that help in alleviating symptoms of lung diseases. We have also hypothesized new models to help in understanding bacterial pathways involved in the gut–lung axis as well as act as a futuristic approach in finding treatment of respiratory diseases caused by dysbiosis.


1998 ◽  
Vol 1 (1) ◽  
pp. 45-52 ◽  
Author(s):  
M. Defos du Rau ◽  
F. Pessan ◽  
G. Ruffie ◽  
V. Vignéras-Lefebvre ◽  
J. P. Parneix

Sign in / Sign up

Export Citation Format

Share Document