Cooperative traffic light controlling based on machine learning and a genetic algorithm

Author(s):  
Huan Wang ◽  
Jiang Liu ◽  
Zhenni Pan ◽  
Koshimizu Takashi ◽  
Shigeru Shimamoto
2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


2021 ◽  
pp. 1-12
Author(s):  
Fei Long

The difficulty of English text recognition lies in fuzzy image text classification and part-of-speech classification. Traditional models have a high error rate in English text recognition. In order to improve the effect of English text recognition, guided by machine learning ideas, this paper combines ant colony algorithm and genetic algorithm to construct an English text recognition model based on machine learning. Moreover, based on the characteristics of ant colony intelligent algorithm optimization, a method of using ant colony algorithm to solve the central node is proposed. In addition, this paper uses the ant colony algorithm to obtain the characteristic points in the study area and determine a reasonable number, and then combine the uniform grid to select some non-characteristic points as the central node of the core function, and finally use the central node with a reasonable distribution for modeling. Finally, this paper designs experiments to verify the performance of the model constructed in this paper and combines mathematical statistics to visually display the experimental results using tables and graphs. The research results show that the performance of the model constructed in this paper is good.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3100
Author(s):  
Anusha Mairpady ◽  
Abdel-Hamid I. Mourad ◽  
Mohammad Sayem Mozumder

The selection of nanofillers and compatibilizing agents, and their size and concentration, are always considered to be crucial in the design of durable nanobiocomposites with maximized mechanical properties (i.e., fracture strength (FS), yield strength (YS), Young’s modulus (YM), etc). Therefore, the statistical optimization of the key design factors has become extremely important to minimize the experimental runs and the cost involved. In this study, both statistical (i.e., analysis of variance (ANOVA) and response surface methodology (RSM)) and machine learning techniques (i.e., artificial intelligence-based techniques (i.e., artificial neural network (ANN) and genetic algorithm (GA)) were used to optimize the concentrations of nanofillers and compatibilizing agents of the injection-molded HDPE nanocomposites. Initially, through ANOVA, the concentrations of TiO2 and cellulose nanocrystals (CNCs) and their combinations were found to be the major factors in improving the durability of the HDPE nanocomposites. Further, the data were modeled and predicted using RSM, ANN, and their combination with a genetic algorithm (i.e., RSM-GA and ANN-GA). Later, to minimize the risk of local optimization, an ANN-GA hybrid technique was implemented in this study to optimize multiple responses, to develop the nonlinear relationship between the factors (i.e., the concentration of TiO2 and CNCs) and responses (i.e., FS, YS, and YM), with minimum error and with regression values above 95%.


2021 ◽  
pp. 1-14
Author(s):  
Rani Nooraeni ◽  
Jimmy Nickelson ◽  
Eko Rahmadian ◽  
Nugroho Puspito Yudho

Official statistics on monthly export values have a publicity lag between the current period and the published publication. None of the previous researchers estimated the value of exports for the monthly period. This circumstance is due to limitations in obtaining supporting data that can predict the criteria for the current export value of goods. AIS data is one type of big data that can provide solutions in producing the latest indicators to forecast export values. Statistical Methods and Conventional Machine Learning are implemented as forecasting methods. Seasonal ARIMA and Artificial Neural Network (ANN) methods are both used in research to forecast the value of Indonesia’s exports. However, ANN has a weakness that requires high computational costs to obtain optimal parameters. Genetic Algorithm (GA) is effective in increasing ANN accuracy. Based on these backgrounds, this paper aims to develop and select an AIS indicator to predict the monthly export value in Indonesia and optimize ANN performance by combining the ANN algorithm with the genetic algorithm (GA-ANN). The research successfully established five indicators that can be used as predictors in the forecasting model. According to the model evaluation results, the genetic algorithm has succeeded in improving the performance of the ANN model as indicated by the resulting RMSE GA-ANN value, which is smaller than the RMSE of the ANN model.


2021 ◽  
Author(s):  
Hugo Abreu Mendes ◽  
João Fausto Lorenzato Oliveira ◽  
Paulo Salgado Gomes Mattos Neto ◽  
Alex Coutinho Pereira ◽  
Eduardo Boudoux Jatoba ◽  
...  

Within the context of clean energy generation, solar radiation forecast is applied for photovoltaic plants to increase maintainability and reliability. Statistical models of time series like ARIMA and machine learning techniques help to improve the results. Hybrid Statistical + ML are found in all sorts of time series forecasting applications. This work presents a new way to automate the SARIMAX modeling, nesting PSO and ACO optimization algorithms, differently from R's AutoARIMA, its searches optimal seasonality parameter and combination of the exogenous variables available. This work presents 2 distinct hybrid models that have MLPs as their main elements, optimizing the architecture with Genetic Algorithm. A methodology was used to obtain the results, which were compared to LSTM, CLSTM, MMFF and NARNN-ARMAX topologies found in recent works. The obtained results for the presented models is promising for use in automatic radiation forecasting systems since it outperformed the compared models on at least two metrics.


2021 ◽  
Author(s):  
Xianwang Li ◽  
Zhongxiang Huang ◽  
Wenhui Ning

Abstract Machine learning is gradually developed and applied to more and more fields. Intelligent manufacturing system is also an important system model that many companies and enterprises are designing and implementing. The purpose of this study is to evaluate and analyze the model design of Intelligent Manufacturing System Based on machine learning algorithm. The method of this study is to first obtain all the relevant attributes of the intelligent manufacturing system model, and then use machine learning algorithm to delete irrelevant attributes to prevent redundancy and deviation of neural network fitting, make the original probability distribution as close as possible to the distribution when using the selected attributes, and use the ratio of industry average to quantitative expression for measurable and obvious data indicators. As a result, the average running time of the intelligent manufacturing system is 17.35 seconds, and the genetic algorithm occupies 15.63 seconds. The machine learning network takes up 1.72 seconds. Under the machine learning algorithm, the training speed is very high, obviously higher than that of the genetic algorithm, and the BP network is 2.1% higher than the Elman algorithm. The evaluation running speed of the system model design is fast and the accuracy is high. This study provides a certain value for the model design evaluation and algorithm of various systems in the intelligent era.


Sign in / Sign up

Export Citation Format

Share Document