Game theoretical secure wireless communication for UAV-assisted vehicular Internet of Things

2021 ◽  
Vol 18 (7) ◽  
pp. 147-157
Author(s):  
Bo Liu ◽  
Zhou Su ◽  
Qichao Xu
2018 ◽  
Vol 7 (3.12) ◽  
pp. 545
Author(s):  
Risabh Mishra ◽  
M Safa ◽  
Aditya Anand

Recent advances in wireless communication technologies and automobile industry have triggered a significant research interest in the field of Internet of Vehicles over the past few years.The advanced period of the Internet of Things is guiding the development of conventional Vehicular Networks to the Internet of Vehicles.In the days of Internet connectivity there is need to be in safe and problem-free environment.The Internet of Vehicles (IoV) is normally a mixing of three networks: an inter-vehicleNetwork, an intra-vehicle network, and a vehicle to vehicle network.Based on  idea of three networks combining into one, we define  Internet of Vehicles as a large-scale distributed system to wireless communication and information exchange between vehicle2X (X: vehicle, road, human and internet).It is a combined   network for supporting intelligent traffic management, intelligent dynamic information service, and intelligent vehicle control, representation of an application of the Internet of Things (IoT) technology for intelligent transportation system (ITS).  


Author(s):  
Е.Е. Девяткин ◽  
Д.Н. Федоров ◽  
Я.М. Гасс ◽  
М.В. Иванкович

Рассмотрены и классифицированы существующие узкополосные беспроводные сети связи (УБСС), реализованные с использованием конвергентных решений. Показано, что появление нового объекта регулирования УБСС интернета вещей усиливает необходимость перехода от локальных корректировок законодательства в сфере связи к созданию инфо- коммуникационного кодекса Российской Федерации. Existing narrowband wireless communication networks using convergent solutions are reviewed and classified. It is shown that the emergence of narrowband wireless networks of Internet of things increases the need for transition from local adjustments of legislation in the field of communications to the creation of the Infocommunication Code of the Russian Federation.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Wonsuk Ko

Abstract Sub-terahertz (THz) technology is expected to deliver exceptional data rates for future sixth generation wireless communication systems especially for intelligent communication among devices falling under the Internet of Things (IoT) category. Moving from current 5G millimeter wave (mmW) technology towards THz spectrum will eventually provide unprecedented solutions that will guarantee higher transmission rates and channel capacity for any wireless communication system. With various electronic and wireless components working together to fulfill this promise, high gain antennas having compact profile is one such technology that will aid in achieving sub-THz communication while offering low path and power losses with reliable and fast data transfers. In this context, this work proposes a novel deformed patch antenna operating in the sub-THz spectrum i.e. at 300 GHz band. The proposed antenna is fed via a microstrip line following the proximity coupled feeding technique. Utilizing this technique provides a wide impedance bandwidth with a broadside radiation pattern having minimum side lobe levels of around −12 dB and a directivity of 10–15 dBi for the single and array elements respectively. The proposed design has a small footprint of 1.5 × 1.5 × 0.06 mm3 for the single element while the array element has dimensions of 6 × 5 × 0.06 mm3. Both the designs have been simulated in Computer Simulation Technology-Microwave Studio (CST-MWS) and the results verified via high-frequency structure simulator (HFSS) simulator. The results confirm the viability of the proposed designs to be potential candidates for future sixth generation and IoT based applications.


Author(s):  
Eva Masero Rubio ◽  
Pedro Miguel Baptista Torres ◽  
Rogério Pais Dionísio

This book chapter proposes a description of smart gateways and cyber-physical systems (CPS) for the industrial internet of things (I-IOT). It also presents a case study where a smart gateway is developed to be used in different types of industrial equipment for the shop floor. The case study is developed under the specifications of different industries in the region of Castelo Branco. It is a proof that the 4th industrial revolution will be the engine for SME innovation, independence of the regions and their financial strength. It is also proof that the cooperation between universities, industries and startups can evolve to break barriers and add value in the improvement of regional industries competitiveness. Topics that will be addressed on the chapter can be used for developers, students, researchers and enthusiasts to learn topics related to I-IOT, such as data acquisitions systems, wired and wireless communication devices and protocols, OPC servers and LabVIEW programming.


2019 ◽  
Vol 15 (9) ◽  
pp. 155014771987935
Author(s):  
Guo-Ming Sung ◽  
Yen-Shin Shen ◽  
Jia-Hong Hsieh ◽  
Yu-Kai Chiu

This article proposes an Internet of Things–based smart home system composed of a virtualized cloud server and a mobile phone app. The smart Internet of Things–based system includes a sensing network, which is developed with the ZigBee wireless communication protocol, a message queuing telemetry transport, a virtualized cloud server and a mobile phone app. A Raspberry Pi development board is used to receive packet information from the terminal sensors using ZigBee wireless communication. Then, the message queuing telemetry transport broker not only completes transmission of the message but also publishes it to the virtualized cloud server. The transmission can then be viewed through the website using a mobile phone. The designed app combines the application of the virtualized cloud server, client sensors and the database. Verification experiments revealed the measured average response time and throughput of approximately 4.0 s and 6069 requests per second, respectively, for the virtualized web server and approximately 0.144 s and 8866 packets per second, respectively, for the message queuing telemetry transport broker. The designed functions of the mobile phone app are a global positioning system home monitoring, family memo, medical care and near-field communication key. Both interlinkage and handler methods are proposed to facilitate a powerful function without delay in displaying information. The proposed system integrates with software and hardware to complete the data analysis and information management quickly and correctly. It can cater to user needs with superior ease and convenience.


2017 ◽  
Vol 13 (10) ◽  
pp. 21 ◽  
Author(s):  
Xijuan Wang

<p style="margin: 1em 0px;"><span lang="EN-US"><span style="font-family: 宋体; font-size: medium;">To realize the remote monitoring and intelligent management of the home environment, intelligent home remote monitoring system is developed based on the Internet of things technology. By using RF transceiver chip and GPRS technology, a smart home system scheme for wireless networks is established. The hardware and software design of sensor nodes and GPRS wireless communication base station is completed. Sensor nodes are used to monitor the acquisition of field data. Based on GPRS technology, the wireless communication base station realizes the uploading of monitoring data. The wireless communication between the node and the base station is realized by radio frequency transceiver chip SI4432. The results show that the system reaches the aim of expected design function. Therefore, it can be concluded that the system can meet the intelligent monitoring of the home environment.</span></span></p>


Sign in / Sign up

Export Citation Format

Share Document