Sub-terahertz (THz) antenna for Internet of Things and 6G Communication

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Wonsuk Ko

Abstract Sub-terahertz (THz) technology is expected to deliver exceptional data rates for future sixth generation wireless communication systems especially for intelligent communication among devices falling under the Internet of Things (IoT) category. Moving from current 5G millimeter wave (mmW) technology towards THz spectrum will eventually provide unprecedented solutions that will guarantee higher transmission rates and channel capacity for any wireless communication system. With various electronic and wireless components working together to fulfill this promise, high gain antennas having compact profile is one such technology that will aid in achieving sub-THz communication while offering low path and power losses with reliable and fast data transfers. In this context, this work proposes a novel deformed patch antenna operating in the sub-THz spectrum i.e. at 300 GHz band. The proposed antenna is fed via a microstrip line following the proximity coupled feeding technique. Utilizing this technique provides a wide impedance bandwidth with a broadside radiation pattern having minimum side lobe levels of around −12 dB and a directivity of 10–15 dBi for the single and array elements respectively. The proposed design has a small footprint of 1.5 × 1.5 × 0.06 mm3 for the single element while the array element has dimensions of 6 × 5 × 0.06 mm3. Both the designs have been simulated in Computer Simulation Technology-Microwave Studio (CST-MWS) and the results verified via high-frequency structure simulator (HFSS) simulator. The results confirm the viability of the proposed designs to be potential candidates for future sixth generation and IoT based applications.

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Ahmad Fauzi Bin Abas ◽  
Wonsuk Ko ◽  
Majeed A. Alkanhal ◽  
...  

Terahertz (THz) links will play a major role in high data rate communication over a distance of few meters. In order to achieve this task, antenna designs with high gain and wideband characteristics will spearhead these links. In this contribution, we present different antenna designs that offer characteristics better suited to THz communication over short distances. Firstly, a single-element antenna having a dipole and reflector is designed to operate at 300 GHz, which is considered as a sub-terahertz band. That antenna achieves a wide impedance bandwidth of 38.6% from 294 GHz to 410 GHz with a gain of 5.14 dBi. Secondly, two designs based on the same dipole structure but with added directors are introduced to increase the gain while maintaining almost the same bandwidth. The gains achieved are 8.01 dBi and 9.6 dBi, respectively. Finally, an array of 1×4 elements is used to achieve the highest possible gain of 13.6 dBi with good efficiency about 89% and with limited director elements for a planar compact structure to state-of-the-art literature. All the results achieved make the proposed designs viable candidates for high-speed and short-distance wireless communication systems.


2020 ◽  
Vol 10 (13) ◽  
pp. 4546
Author(s):  
Tarek S. Mneesy ◽  
Radwa K. Hamad ◽  
Amira I. Zaki ◽  
Wael A. E. Ali

This paper presented the design and implementation of a 60 GHz single element monopole antenna as well as a two-element array made of two 60 GHz monopole antennas. The proposed antenna array was used for 5G applications with radiation characteristics that conformed to the requirements of wireless communication systems. The proposed single element was designed and optimized to work at 60 GHz with a bandwidth of 6.6 GHz (57.2–63.8 GHz) and a maximum gain of 11.6 dB. The design was optimized by double T-shaped structures that were added in the rectangular slots, as well as two external stubs in order to achieve a highly directed radiation pattern. Moreover, ring and circular slots were made in the partial ground plane at an optimized distance as a defected ground structure (DGS) to improve the impedance bandwidth in the desired band. The two-element array was fed by a feed network, thus improving both the impedance bandwidth and gain. The single element and array were fabricated, and the measured and simulated results mimicked each other in both return loss and antenna gain.


Signals ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 29-37
Author(s):  
Muhammad Ikram

The current and future wireless communication systems, WiFi, fourth generation (4G), fifth generation (5G), Beyond5G, and sixth generation (6G), are mixtures of many frequency spectrums. Thus, multi-functional common or shared aperture antenna modules, which operate at multiband frequency spectrums, are very desirable. This paper presents a multiple-input and multiple-output (MIMO) antenna design for the 5G/B5G Internet of Things (IoT). The proposed MIMO antenna is designed to operate at multiple bands, i.e., at 3.5 GHz, 3.6 GHz, and 3.7 GHz microwave Sub-6 GHz and 28 GHz mm-wave bands, by employing a single radiating aperture, which is based on a tapered slot antenna. As a proof of concept, multiple tapered slots are placed on the corner of the proposed prototype. With this configuration, multiple directive beams pointing in different directions have been achieved at both bands, which in turn provide uncorrelated channels in MIMO communication. A 3.5 dBi realized gain at 3.6 GHz and an 8 dBi realized gain at 28 GHz are achieved, showing that the proposed design is a suitable candidate for multiple wireless communication standards at Sub-6 GHz and mm-wave bands. The final MIMO structure is printed using PCB technology with an overall size of 120 × 60 × 10 mm3, which matches the dimensions of a modern mobile phone.


2015 ◽  
Vol 8 (3) ◽  
pp. 633-641
Author(s):  
Hamsakutty Vettikalladi ◽  
Muhammad Kamran Saleem ◽  
Majeed A.S. Alkanhal

The design and the results of a single slot coupled substrate integrated waveguide (SIW)-fed membrane antenna and a 1 × 4 array is presented for 94 GHz communication system. The membrane antenna is designed using Ansys high frequency structure simulator and consists of six layers. The microstrip patch antenna placed on the top pyralux substrate layer is excited by means of a longitudinal rectangular slot placed over the SIW structure in the bottom pyralux substrate. The simulated antenna impedance bandwidth is found to be 5 GHz (91.5–96.5 GHz) for both single element and 1 × 4 array. Furthermore, the gain is found to be 7 and 13 dBi for the single element and the 1 × 4 array elements, respectively. The results are verified using Computer Simulation Technology (CST) Microwave Studio and are found to be in good agreement.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 673
Author(s):  
Mian Kamal ◽  
Shouyi Yang ◽  
Saad Kiani ◽  
Daniyal Sehrai ◽  
Mohammad Alibakhshikenari ◽  
...  

To address atmospheric attenuation and path loss issues in the mmwave portion of the spectrum, high gain and narrow beam antenna systems are essential for the next generation communication networks. This paper presents a novel hook-shaped antenna array for 28 GHz 5G mmwave applications. The proposed antenna was fabricated on commercially available Rogers 5880 substrate with thickness of 0.508 mm and dimensions of 10 × 8 mm2. The proposed shape consists of a circle with an arc-shaped slot on top of it and T-shaped resonating lengths are introduced in order to attain broad band characteristics having gain of 3.59 dBi with radiation and total efficiency of 92% and 86% for single element. The proposed structure is transformed into a four-element array with total size of 26.9 × 18.5 mm2 in order to increase the gain up to 10.3 dBi at desired frequency of interest. The four-element array is designed such that it exhibits dual-beam response over the entire band of interest and the simulated results agree with fabricated prototype measurements. The proposed antenna array, because of its robustness, high gain, and dual-beam characteristics can be considered as a potential candidate for the next generation 5G communication systems.


Author(s):  
Yusnita Rahayu ◽  
Indah Permata Sari ◽  
Dara Incam Ramadhan ◽  
Razali Ngah

This article presented a millimeter wave antenna which operated at 38 GHz for 5G mobile base station. The MIMO (Multiple Input Multiple Output) antenna consisted of 1x10 linear array configurations. The proposed antenna’s size was 88 x 98 mm^2  and printed on 1.575 mm-thick Rogers Duroid 5880 subsrate with dielectric constant of ε_r= 2.2 and loss tangent (tanδ) of 0.0009. The antenna array covered along the azimuth plane to provide the coverage to the users in omnidirection. The simulated results showed that the single element antenna had the reflection coefficient (S11) of -59 dB, less than -10 dB in the frequency range of 35.5 - 39.6 GHz. More than 4.1 GHz of impedance bandwidth was obtained. The gain of the antenna linear array was 17.8 dBi while the suppression of the side lobes was -2.7 dB.  It showed a high array gain throughout the impedance bandwidth with overall of VSWR were below 1.0646. It designed using CST microwave studio.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 347 ◽  
Author(s):  
Ke Li ◽  
Tao Dong ◽  
Zhenghuan Xia

This paper presents a multiple-resonance technique that sought to achieve a wide bandwidth for printed wide-slot antennas with fork-shaped stubs. By properly appending an extra fork-shaped stub onto the main fork-shaped stub, the impedance bandwidth was able to be clearly broadened. To validate this technique, two designs where the extra stubs were added at different positions of the main stub were constructed. The measured impedance bandwidths of the proposed antennas reached 148.6% (0.9–6.1 GHz) for S11 < −10 dB, indicating a 17.9% wider bandwidth than that of the normal antenna (0.9–4.3 GHz). Moreover, a stable radiation pattern was observed within the operating frequency range. The proposed antennas were confirmed to be much-improved candidates for applications in various wireless communication systems.


2021 ◽  
Vol 11 (14) ◽  
pp. 6267
Author(s):  
Tiago Varum ◽  
João Caiado ◽  
João N. Matos

Modern communication systems require high bandwidth to meet the needs of the huge number of sensors and the growing amount of data consumed, and an exponential growth is expected in the future with the integration of internet of things networks. Spectrum regions in the millimeter waves have aroused new interests, mainly because of the contiguous bands available to meet these needs. In return, and to combat the high losses of propagation in these frequencies, higher gain antennas are needed. This paper describes the use of a logarithmic architecture in the design of microstrip antenna arrays, creating structures with high gain and ultra-wide bandwidth. Three different solutions are presented with five, seven, and nine elements, reaching about 25%, 30%, and 44% of bandwidth, achieving ultra-wideband behavior, efficient and with a compact structure operating at frequencies in around 28 GHz.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Majeed A. Alkanhal

In order to achieve wide bandwidth and high gain, we propose a stacked antenna structure having a microstrip aperture coupled feeding technique with a mounted Horn integrated on it. With optimized parameters, the single antenna element at a center frequency of 60 GHz, exhibits a wide impedance bandwidth of about 10.58% (58.9–65.25 GHz) with a gain and efficiency of 11.78 dB and 88%, respectively. For improving the gain, we designed a 2 × 2 and 4 × 4 arrays with a corporate feed network. The side lobe levels were minimized and the back radiations were reduced by making use of a reflector atλ/4distance from the corporate feed network. The2×2array structure resulted in improved gain of 15.3 dB with efficiency of 83%, while the4×4array structure provided further gain improvement of 18.07 dB with 68.3% efficiency. The proposed design is modelled in CST Microwave Studio. The results are verified using HFSS, which are found to be in good agreement.


Sign in / Sign up

Export Citation Format

Share Document