Mechanical Properties Characterizations of Elastomer Pads and Control of a 3-DOF Rubber-Bearing Stage

Author(s):  
Yu-Cheng Chen ◽  
Chi-An Chen ◽  
Kuo-Shen Chen ◽  
Yun-Hui Liu
2019 ◽  
Vol 69 (1) ◽  
pp. 42-52
Author(s):  
Sohrab Rahimi ◽  
Kaushlendra Singh ◽  
David DeVallance

Abstract Nonchemical high-pressure steam treatments have been intensively researched and commercialized to produce chemical-free wood products with enhanced properties. However, the utilization of high-pressure steam involves vapor-phase reactions using high-temperature steam generated at the expense of high energy input. In this research, influences of reaction media (steam and hot-compressed water) and temperature (100°C and 140°C) during thermal treatment on physical properties and drying behavior of yellow-poplar (Liriodendron tulipifera) heartwood were compared. The length, width, and thickness of the samples were 22.53 mm, 17.18 mm, and 16.72 mm, respectively. After the treatment, the samples were dried under an isothermal temperature condition of 105°C. Data on moisture content and time of drying from drying experiments were fitted with unsteady-state molecular transport equations to calculate overall liquid diffusion coefficients. Dimensions, weight, and true volume of samples were measured for green, thermally treated, and dried samples and the values were used to calculate selected physical characteristics. Additionally, selected mechanical properties were evaluated for samples conditioned to 13 percent moisture content. Results showed that intensified hot-compressed water-treated and control samples had the highest and lowest saturated moisture contents (101% and 44%), respectively, immediately after treatments. Intensified steam-treated and control samples had the highest and lowest total porosity (95% and 82%), respectively. Furthermore, mild hot-compressed water-treated samples showed the greatest compression strength (47.8 MPa) at 13 percent moisture content. Except for steam treatment at 140°C, other treatments significantly decreased the diffusion coefficient. Collectively, samples treated with hot-compressed water at 100°C showed the most improved mechanical properties.


2011 ◽  
Vol 189-193 ◽  
pp. 1132-1136 ◽  
Author(s):  
Yong Xu Zhao ◽  
Wen Jun Hu ◽  
Jun Mei ◽  
Niu Wei ◽  
Jian Jun Xie

After testing on T-type rubber bearing under tensile, compression and shear mechanical properties under different temperature in this paper. Obtained load deflection curve and destructive mode under different loading conditions at -40 and normal temperature of rubber components. Analysis the impact of temperature and the loading conditions that effect on load-elongation and destructive mode of T-type damping rubber structure. It showed that T-end rubber bearing has different kinds of deformation under different force-giving methods. Under compression, the stress pattern of the rubber bearing is three-dimensional and middle rubber bear the greatest force. Under tensile loading, the middle part of the rubber contract and the side with smaller lateral section has greater shrinkage; moreover, damage occurred in the area with stress concentration and weak strength. Under shearing action, extrude faces appeared with crinkle and damage occurred in the middle part of extrude faces. At the low temperature-40 , rubber support still has great elastic properties. The low temperature has a big effect on tensile properties and has little effect on damage properties.


2020 ◽  
pp. 002199832097519
Author(s):  
Fatma Naiiri ◽  
Allègue Lamis ◽  
Salem Mehdi ◽  
Zitoune Redouane ◽  
Zidi Mondher

Natural fibers are increasingly used in composites because of their low cost and good mechanical properties. Cement reinforced with natural fibersis contemplates as a new generation of construction materials with superior mechanical and thermal performance. This study of three sizes’effect of Doum palm fiber explores the mortar’s behavior reinforced with different fiber ratio. The aim is to determine the optimal addition to improve mechanical and thermal properties of natural fiber reinforced cements. Physical, mechanical and thermal properties of composite are examined. Tensile properties of Doum fibers are verified to determine their potential as reinforced material. Findings prove that the use of alkali-treated Doum fiber as reinforcement in cement mortar composite leads to the upgrading of the mechanical properties including thermo-physical properties against composites reinforced with raw fibers and control cement mortars. While, the compression and flexural strength of the cement mortar reinforced with alkali-treated Doum fiber with diameter 0.3 mm (CT3) are metered to be 11.11 MPa, 5.22 MPa, respectively for fiber content 0.5%. Additionally, based on thermo-physical tests, it is assessed that the thermal conductivity and diffusivity decrease for cement mortar reinforced with Doum fiber with diameter 0.2 mm (CT2).


Author(s):  
David N. Kordonowy ◽  
Sydney A. Giblin

This paper describes how direct digital manufacturing mechanical properties can be analytically estimated for structural use and the associated analytical and test methods used in the design and fabrication of airframes manufactured using additive manufacturing. Complex shape structures, which are now possible using additive manufacturing, and their associated mechanical properties can be predicted in order to allow operationally safe and highly predictive structures to be fabricated. Direct digital manufacturing allows for much greater flexibility and control over the design of airframes, leading to more structurally efficient and capable airframes. These advantages are revealed by application of direct digital manufacturing methods on a series of fixed wing subsonic transport concept wind tunnel scale models that are carried out as a part of the NASA N+3 program, which is paving the way for next generation aircraft that are highly fuel efficient, low-noise, and low-emission. Verification of these methods through test shows excellent correlation that provides reliability in complex sparse filled additive manufacturing design. The outcome of this is a knowledge base, which can then be applied to a system in operation. The combined potential of a flexible manufacturing system and proven predictive analysis tools shorten development time and expand the opportunities for mass customization. These combined benefits enable industry to fabricate affordable highly optimized custom products while concurrently reducing the cycle times required to field new products.


2013 ◽  
Vol 214 (17) ◽  
pp. 1951-1964 ◽  
Author(s):  
Claudio De Rosa ◽  
Finizia Auriemma ◽  
Odda Ruiz de Ballesteros ◽  
Rocco Di Girolamo ◽  
Oreste Tarallo ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 790 ◽  
Author(s):  
Fuwen Chen ◽  
Guanglong Xu ◽  
Kechao Zhou ◽  
Hui Chang

Bimodal microstructures where globular α and acicular α phases are embedded in the β matrix are commonly used in industry-relevant Ti-55531. To optimize the performance of Ti-55531 through heat treatment, it is crucial to understand and control the phase transformation in the as-received bimodal Ti-55531 as well as its microstructure evolution. In this work, the isochronal phase transformations and microstructure evolution in the bimodal Ti-55531 during the continuous heating were systematically studied by combining dilatometry, XRD phase analyses, and SEM observation. The β → α transformation occurred at 678 K only with the acicular α. When the temperature was higher than 788 K, α → β transformation took place in two separate stages (i.e., αacicular → β and αglobular → β transformation). The dissolution of αglobular occurred after the dissolution of αacicular was completed. Due to the difference in the chemical composition and interface curvature between αacicular and αglobular, the average activation energy for αacicular → β transformation was lower than that for the αglobular → β transformation. The isochronal phase transformation and microstructure evolution during continuous heating in the present work could be used to optimize heat treatment procedures for desired mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document