scholarly journals Isochronal Phase Transformation in Bimodal Ti-55531

Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 790 ◽  
Author(s):  
Fuwen Chen ◽  
Guanglong Xu ◽  
Kechao Zhou ◽  
Hui Chang

Bimodal microstructures where globular α and acicular α phases are embedded in the β matrix are commonly used in industry-relevant Ti-55531. To optimize the performance of Ti-55531 through heat treatment, it is crucial to understand and control the phase transformation in the as-received bimodal Ti-55531 as well as its microstructure evolution. In this work, the isochronal phase transformations and microstructure evolution in the bimodal Ti-55531 during the continuous heating were systematically studied by combining dilatometry, XRD phase analyses, and SEM observation. The β → α transformation occurred at 678 K only with the acicular α. When the temperature was higher than 788 K, α → β transformation took place in two separate stages (i.e., αacicular → β and αglobular → β transformation). The dissolution of αglobular occurred after the dissolution of αacicular was completed. Due to the difference in the chemical composition and interface curvature between αacicular and αglobular, the average activation energy for αacicular → β transformation was lower than that for the αglobular → β transformation. The isochronal phase transformation and microstructure evolution during continuous heating in the present work could be used to optimize heat treatment procedures for desired mechanical properties.

2018 ◽  
Vol 284 ◽  
pp. 615-620 ◽  
Author(s):  
R.M. Baitimerov ◽  
P.A. Lykov ◽  
L.V. Radionova

TiAl6V4 titanium base alloy is widely used in aerospace and medical industries. Specimens for tensile tests from TiAl6V4 with porosity less than 0.5% was fabricated by selective laser melting (SLM). Specimens were treated using two heat treatment procedures, third batch of specimens was tested in as-fabricated statement after machining. Tensile tests were carried out at room temperature. Microstructure and mechanical properties of SLM fabricated TiAl6V4 after different heat treatments were investigated.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1165 ◽  
Author(s):  
Hannes Fröck ◽  
Lukas Vincent Kappis ◽  
Michael Reich ◽  
Olaf Kessler

Age hardening aluminium alloys obtain their strength by forming precipitates. This precipitation-hardened state is often the initial condition for short-term heat treatments, like welding processes or local laser heat treatment to produce tailored heat-treated profiles (THTP). During these heat treatments, the strength-increasing precipitates are dissolved depending on the maximum temperature and the material is softened in these areas. Depending on the temperature path, the mechanical properties differ between heating and cooling at the same temperature. To model this behavior, a phenomenological material model was developed based on the dissolution characteristics and experimental flow curves were developed depending on the current temperature and the maximum temperature. The dissolution characteristics were analyzed by calorimetry. The mechanical properties at different temperatures and peak temperatures were recorded by thermomechanical analysis. The usual phase transformation equations in the Finite Element Method (FEM) code, which were developed for phase transformation in steels, were used to develop a phenomenological model for the mechanical properties as a function of the relevant heat treatment parameters. This material model was implemented for aluminium alloy 6060 T4 in the finite element software LS-DYNA (Livermore Software Technology Corporation).


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4223 ◽  
Author(s):  
Xi Zhao ◽  
Shuchang Li ◽  
Fafa Yan ◽  
Zhimin Zhang ◽  
Yaojin Wu

Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion (350 °C) and heat treatment with varying parameters were investigated, respectively. The results showed that dynamic recrystallization of Mg grains was developed and the dendritic eutectic β-Mg17Al12 phases formed during the solidification were broken into small β-phase particles after hot extrusion. Moreover, a weak texture with two dominant peaks formed owing to the significant grain refinement and the enhanced activation of pyramidal <c + a> slip at relative high temperature. The tension tests showed that both the yield strength and ultimate tensile strength of the extruded alloy were dramatically improved owing to the joint strengthening effect of fine grain and β-phase particles as compared with the homogenized sample. The solution treatment achieved the good plasticity of the alloy resulting from the dissolution of β-phases and the development of more equiaxed grains, while the direct-aging process led to poor alloy elongation as a result of residual eutectic β-phases. After solution and aging treatment, simultaneous bonding strength and plasticity of the alloy were achieved, as a consequence of dissolution of coarse eutectic β-phases and heterogeneous precipitation of a large quantity of newly formed β-phases with both the morphologies of continuous and discontinuous precipitates.


2017 ◽  
Vol 898 ◽  
pp. 476-479
Author(s):  
Jin Xia Yang ◽  
Yuan Sun ◽  
Dong Ling Zhou

The effects of HIP process on microstructure and mechanical properties of IN792 cast superalloy were studied. The results showed that HIP process produced more uniform and finer cubic γ′ than standard heat treatment. The difference of the mechanical properties should be caused by the microstructure changes. HIP process leads the homogeneous distribution of γ′ at dendritic arm and interdendritic area, and improved UTS and YS of tested alloy at 550°C. However, it played no role in increasing UTS and YS at room temperature and stress-rupture lives of 760°C/662MPa and decreased stress-rupture lives of 982°C/186MPa.


2018 ◽  
Vol 764 ◽  
pp. 1056-1071 ◽  
Author(s):  
Xingchen Yan ◽  
Shuo Yin ◽  
Chaoyue Chen ◽  
Chunjie Huang ◽  
Rodolphe Bolot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document