scholarly journals Desain High Temperature Gas-Cooled Reactor (HTGR) Model Geometri Heksagonal Dua Dimensi dengan Bahan Bakar Thorium Hasil Daur Ulang

2020 ◽  
Vol 1 (1) ◽  
pp. 12-16
Author(s):  
Mutia Utari ◽  
◽  
Yanti Yulianti ◽  
Agus Riyanto ◽  
◽  
...  

The Research about the design of high temperature helium gas-cooled reactor (HTGR) terraces with thorium fuel recycled using the SRAC program has been completed. This research includes the percentage of fuel enrichment, reactor core size, reactor core configuration, criticality, and the distribution of the power density. The calculation of reactor core is done in two dimensions \sfrac{1}{6} hexagonal terrace section with a triangular mesh. The fuel is used, i.e. thorium with a burn-up of 20 GWd/t and 30 GWd/t, and helium gas as a cooler. The results obtained in this study show that the ideal HTGR reactor core design with reactor core size and configuration are (x) 22 cm at point (y) = 2035,05 cm and at (y) 11 cm at point (x) = 2035,05 cm, then enrichment in fuel 8%. The result of maximum power density is 550.3685 Watt/cm3 where the position at (x) = 22 cm and axis (y) = 11 with the effective multiplication factor value keff of 1,0000002.

Author(s):  
Maria Elizabeth Scari ◽  
Antonella Lombardi Costa ◽  
Claubia Pereira ◽  
Clarysson Alberto Mello da Silva ◽  
Maria Auxiliadora Fortini Veloso

Several efforts have been considered in the development of the modular High Temperature Gas cooled Reactor (HTGR) planned to be a safe and efficient nuclear energy source for the production of electricity and industrial applications. In this work, the RELAP5-3D thermal hydraulic code was used to simulate the steady state behavior of the 10 MW pebble bed high temperature gas cooled reactor (HTR-10), designed, constructed and operated by the Institute of Nuclear and New Energy Technology (INET), in China. The reactor core is cooled by helium gas. In the simulation, results of temperature distribution within the pebble bed, inlet and outlet coolant temperatures, coolant mass flow, and others parameters have been compared with the data available in a benchmark document published by the International Atomic Energy Agency (IAEA) in 2013. This initial study demonstrates that the RELAP5-3D model is capable to reproduce the thermal behavior of the HTR-10.


Author(s):  
Jihoon Jeong ◽  
Seung-Wook Baek ◽  
Joongmyeon Bae

The metal-supported solid oxide fuel cell (SOFC) was studied. Hydrocarbon fueled operation was used to make SOFC system. Different operating characteristics for metal-supported SOFC are used than for conventional ones. Metal-supported SOFC was successfully fabricated by a high temperature sinter-joining method and the cathode was in-situ sintered. Synthetic gas, which is compounded as the diesel reformate gas composition and low hydrocarbons was completely removed by the diesel reformer. Metal-supported SOFC with synthetic gas was operated and evaluated and its characteristics analyzed. The performance of hydrogen operation shows 0.4 W·cm−2 of maximum power density. The maximum power density of the synthetic gas operation decreased to 0.22 W·cm−2 and to 0.11 W·cm−2 after 10 hours operation, respectively. Degradation occurred because a large steam quantity made an oxidation atmosphere at high temperature, causing the metallic part damage.


Kerntechnik ◽  
2021 ◽  
Vol 86 (3) ◽  
pp. 229-235
Author(s):  
Y. Alzahrani ◽  
K. Mehboob ◽  
F. A. Abolaban ◽  
H. Younis

Abstract In this study, the Doppler reactivity coefficient has been investigated for UO2, MOX, and (Th/U)O2 fuel types. The calculation has been carried out using the Monte Carlo method ( OpenMC). The effective multiplication factor keff has been evaluated for three materials with four different configurations without Integral Fuel Burnable Absorber (IFBA) rods and soluble boron. The results of MOX fuel, homogenous and heterogeneous thorium fuel configuration has been compared with the core of the reference fuel assembly (UO2). The calculation showed that the effective multiplication factor at 1 000 K was 1.26052, 1.14254, 1.22018 and 1.23771 for reference core, MOX, homogenous and heterogeneous configurations respectively. The results shows that reactivity has decreased with increasing temperature while the doppler reactivity coefficient remained negative. Moreover, the use of (Th/U)O2 homogenous and heterogeneous configuration had shown an improved response compared to the reference core at 600 K and 1 000 K. The doppler reactivity coefficient has been found as –8.98E-3 pcm/K, -0.8 655 pcmK for the homogenous and –8.854 pcm/K, -1.2253 pcm/K for the heterogeneous configuration. However, the pattern remained the same as for the reference core at other temperature points. MOX fuel has shown less response compared to the other fuel configuration because of the high resonance absorption coefficient of Plutonium. This study showed that the SMART reactor could be operated safely with investigated fuel and models.


Author(s):  
Xuesong Yan ◽  
Xunchao Zhang ◽  
Yaling Zhang ◽  
Lei Yang ◽  
Wenshan Duan

In this paper, preliminary neutron physical properties of ceramic fast reactor (CFR) are simulated and analyzed. The CFR core consists of ceramic materials, including nuclear fuels, coolants, structural materials, reflective and absorption materials. These ceramics improve inherent safety levels substantially, increase breeding performance, and enhance the power-generation efficiency. The CFR has the potential to operate and breed more than 30 years. The performance of the CFR was simulated focusing on neutron-related effects. The parameters discussed contain fast neutron energy spectrum, the ideal effective multiplication-factor, nuclides mass changes, breeding performance, operation mode, etc. Furthermore, the strengths of the proposed reactor system are discussed. In the future nuclear energy system, CFR may be one of the existing alternative novel reactor type.


2018 ◽  
Vol 20 (3) ◽  
pp. 111 ◽  
Author(s):  
Iman Kuntoro ◽  
Surian Pinem ◽  
Tagor Malem Sembiring

The PWR-FUEL code is a multi dimensional, multi group diffusion code with nodal and finite difference methods. The code will be used to calculate the fuel management of PWR reactor core. The result depends on the accuracy of the codes in producing the core effective multiplication factor and power density distribution. The objective of this research is to validate the PWR-FUEL code for those cases. The validation are carried out by benchmarking cores of IAEA-2D, KOERBERG-2D and BIBLIS-2D. The all three cases have different characteristics, thus it will result in a good accuracy benchmarking. The calculation results of effective multiplication factor have a maximum difference of 0.014 %, which is greater than the reference values. For the power peaking factor, the maximum deviation is 1.75 % as compared to the reference values. Those results show that the accuracy of PWR-FUEL in calculating the static parameter of PWR reactor benchmarks are very satisfactory.Keywords: Validation, PWR-FUEL code, static parameter. VALIDASI PROGRAM PWR-FUEL UNTUK PARAMETER STATIK PADA TERAS BENCHMARK LWR. Program PWR-FUEL adalah program difusi multi-dimensi, multi-kelompok dengan metode nodal dan metode beda hingga. Program ini akan digunakan untuk menghitung manajemen bahan bakar teras reaktor PWR. Akurasi manajemen bahan bakar teras PWR tergantung pada akurasi program dalam memprediksi faktor multiplikasi efektif teras dan distribusi rapat daya. Untuk itu dilakukan validasi program PWR-FUEL sebagai tujuan dalam penelitian ini.  Validasi PWR-FUEL dilakukan menggunakan teras benchmark IAEA-2D, KOERBERG-2D dan BIBLIS-2D. Ketiga kasus ini mempunyai karaktristik yang berbeda sehingga akan memberikan hasil benchmark yang akurat. Hasil perhitungan faktor multiplikasi efektif terdapat perbedaan maksimum adalah 0,014 % lebih besar dari referensi. Sedangkan untuk perhitungan faktor puncak daya, terdapat perbedaan maksimum 1,75 % dibanding harga referensi. Hasil perhitungan menunjukkan bahwa akurasi paket program PWR-FUEL dalam menghitung parameter statik benchmark reaktor PWR menunjukkan hasil yang sangat memuaskan.Kata kunci: Validasi, program PWR-FUEL, parameter statik


2016 ◽  
Vol 6 (2) ◽  
pp. 21-30
Author(s):  
Huu Tiep Nguyen ◽  
Viet Phu Tran ◽  
Tuan Khai Nguyen ◽  
Vinh Thanh Tran ◽  
Minh Tuan Nguyen

This paper presents the results of neutronic calculations using the deterministic and Monte-Carlo methods (the SRAC and MCNP5codes) for the VVER MOX Core Computational Benchmark Specification and the VVER-1000/V392 reactor core. The power distribution and keff value have been calculated for a benchmark problem of VVER core. The results show a good agreement between the SRAC and MCNP5 calculations. Then, neutronic characteristics of VVER-1000/V392 such as power distribution, infinite multiplication factor (k-inf) of the fuel assemblies, effective multiplication factor keff, peaking factor and Doppler coefficient were calculated using the two codes.


Author(s):  
Motoo Fumizawa ◽  
Yuta Kosuge ◽  
Hidenori Horiuchi

This study presents a predictive thermal-hydraulic analysis with packed spheres in a nuclear gas-cooled reactor core. The predictive analysis considering the effects of high power density and the some porosity value were applied as a design condition for an Ultra High Temperature Reactor (UHTR). The thermal-hydraulic computer code was developed and identified as PEBTEMP. The highest outlet coolant temperature of 1316 °C was achieved in the case of an UHTREX at LASL, which was a small scale UHTR using hollow-rod as a fuel element. In the present study, the fuel was changed to a pebble type, a porous media. Several calculation based on HTGR-GT300 through GT600 were 4.8 w/cm3 through 9.6 w/cm3 respectively. As a result, the relation between the fuel temperature and the power density was obtained under the different system pressure and coolant outlet temperature. Finally, available design conditions are selected.


Author(s):  
Tien Q. Nguyen ◽  
Daniel Minami ◽  
Chau Hua ◽  
Austin Miller ◽  
Kevin Tran ◽  
...  

Several reports have been made recently of the direct formate fuel cell (DFFC) operating at high-temperature and using Pt cathode catalyst. In the present work, we demonstrate a Pt-free DFFC employing ACTA HypermecTM 4020 Fe–Co second-generation cathode catalyst operating at low-temperature. We report a maximum power density (PD) of 45 mW cm−2 at ambient temperature (20 °C), when the fuel stream was 1 M HCOOK and 2 M KOH with oxygen used at the cathode. When air was used at the cathode, the maximum PD was 35 mW cm−2. When hydroxide was removed from the fuel stream and oxygen used at the cathode, the maximum PD at 20 °C was 18 mW cm−2. This low-temperature, KOH-free operation is important to development of a practical DFFC.


Sign in / Sign up

Export Citation Format

Share Document