scholarly journals Karakteristik Struktur Mikro dan Gugus Fungsi Komposit Silika Sekam Padi dan Aspal

2020 ◽  
Vol 8 (1) ◽  
pp. 93-100
Author(s):  
Ediman Ginting Suka ◽  
◽  
Ira Sudarsono Putri ◽  
Reka Puspitasari ◽  
Reza Arsela ◽  
...  

Composite of rice husk and asphalt silica was carried out at a ratio of 1: 0.7; 1: 0.8 and 1: 0.9 and heated at 150oC for 3 hours. The characteristics of the phase structure, microstructure, and functional groups were analyzed using X-ray Diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) and Fourier Transform Infrared (FTIR), physical properties analysis (density, porosity) and mechanics (compressive strength). The XRD results showed that the phase in asphalt silica composites detected amorphous carbon at 2θ = 18º and amorphous silica with the amorphous silica peak shifted from 2θ = 22º to 2θ = 20º. Microstructure analysis shows that cracks and clusters are bigger with grain sizes of 7,742 µm, 8,495 µm and 10,921 µm respectively, and the sample composition shows percentage of silicon (Si), Oxygen (O) and sodium (Na), respectively. decreases and the percentage of carbon (C), sulfur (S) increases. The results of FTIR show that the functional groups of Si-OH, Si-O-Si and Si-O bonds are decreasing and the functional groups of C-H bonds are increasing. The addition of asphalt causes the value of density increases, the value of porosity and compressive strength decreases.

2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


2008 ◽  
Vol 55-57 ◽  
pp. 209-212 ◽  
Author(s):  
Theerachai Bongkarn ◽  
P. Panya

(Pb0.925Ba0.075)TiO3 (PBT) ceramics have been prepared using a mixed oxide technique. The phase formation and morphology were studied in detail via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The pure tetragonal perovskite structure was discovered with calcination temperatures above 800 oC. The percentage of perovskite phase and particle size tends to increase with the increasing of calcination temperatures. The PBT ceramics sintered at various temperatures belonged to a pure tetragonal perovskite phase. The average grain sizes increased from 0.90 to 6.44 µm with the increase of sintering temperatures from 1100 to 1200 oC. The highest density was obtained from the sample that sintered at 1150 and 1200 oC


Elkawnie ◽  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Cut Rahmawati ◽  
Sri Aprilia ◽  
Taufiq Saidi ◽  
Teuku Budi Aulia

Abstract: This study was designed to examine the mineral, microstructural, and mechanical strength properties of fly ash and its feasibility as a raw material for geopolymer cement. The study used an experimental method by examining the characteristics of fly ash by X-ray Fluorescence Spectrometer (XRF), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), hydrometer method, Scanning electron microscopy (SEM), and compressive strength testing. For creating the geopolymer cement paste, a concentration of NaOH 10M was used, with a ratio of water/solid = 0.4 and a ratio of Na2SiO3/NaOH = 1 using curring at room temperature. The results showed the geopolymer pastes have a compressive strength of 18.1 MPa and 21.5 MPa after 7 days and 28 days. The XRD results showed a decrease in the peak of 2θ at 26.54° because the amorphous part had transformed into a C-S-H solution in geopolymer cement. This finding was supported by the FTIR spectra results showing Si-O-Si bending vibration and the functional group of AlO2. It showed that Nagan Raya fly ash-based geopolymer is a potential construction material.Abstrak: Penelitian ini dirancang untuk mendapatkan sifat mineral, mikrostruktural, dan kekuatan mekanis dari fly ash serta kesesuaiannya sebagai material dasar pada semen geopolimer. Metode penelitian yang digunakan adalah metode eksperimen dengan cara  menguji karakteristik dari fly ash dengan pengujian X-ray Fluorescense Spectrometer (XRF), Fourier transform infrared (FTIR) spectoscopy, X-ray diffraction (XRD), hydrometer method, Scanning electron microscopy (SEM) dan kuat tekan.  Untuk pembuatan pasta semen geopolimer digunakan konsentrasi NaOH 10 M, rasio water/solid 0,4 dan rasio Na2SiO3/NaOH = 1 dengan perawatan pada suhu kamar. Hasil menunjukkan setelah 7 hari pasta geopolimer memiliki kuat tekan 18,1 MPa dan 21,5 MPa pada 28 hari. Hasil XRD menunjukkan adanya penurunan puncak 2θ pada 26,54° ini disebabkan karena bagian amorf dari fly ash telah menjadi larutan C-S-H pada semen geopolimer. Hasil ini diperkuat dengan analisis FTIR spectra yang menunjukkan adanya Si-O-Si bending vibration dan gugus fungsi dari AlO2. Hasil menunjukkan fly ash dari Nagan Raya potensial sebagai bahan material konstruksi berbasis geopolimer.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9059-9074
Author(s):  
Zehua Zhu ◽  
Cheng Cheng ◽  
Debin Zhu ◽  
Dewen Liu ◽  
Yafei Zhang

Portland cement-based composites were prepared with coffee exocarp (pretreated with water or NaOH) via vacuum extraction technology. An orthogonal test was adopted to analyze the influence of various factors on mechanical properties of the composite. The morphology and composition of the pretreated coffee exocarp and composites were analyzed via environmental scanning electron microscopy and X-ray diffraction, respectively. The results showed that the coffee exocarp content and vacuum extraction time significantly affected the compressive strength. An addition of 10% coffee exocarp had a slight negative effect on the mechanical properties but enhanced the crack inhibition and overall toughness of the composite. The scanning electron microscopy and X-ray diffraction results showed that the composite containing coffee exocarp pretreated with 4% NaOH solution had the highest density and exhibited the best properties due to mechanical interlocking between the coffee exocarp and cement. After 28 d of curing, the composites exhibited a maximum compressive strength of 15.72 MPa, a mass that was approximately 37% less than that of ordinary Portland cement samples, and a bulk density of 1.5 g/cm3 to 1.6 g/cm3. Hence, the produced biocomposites could be used for low-load pavements, providing a new type of economical building material.


2014 ◽  
Vol 775-776 ◽  
pp. 410-414 ◽  
Author(s):  
Verônica Cristina Souza Diniz ◽  
Débora A. Vieira ◽  
Ruth Herta Goldsmith Aliaga Kiminami ◽  
Daniel Cornejo ◽  
Ana Cristina Figueiredo de Melo Costa

This study proposes to evaluate the influence of the variation of sintering temperature on microstructural characteristics and magnetic ferrite Ni0,5Zn0,5Fe2O4sintered by microwave energy. The samples were sintered at 900, 1000, 1100 and 1200°C for exposure time of 10 minutes, with rate 50°C/minutes and characterized by density and porosity, X-ray diffraction, scanning electron microscopy and magnetic measurements. The results indicate that the values of density and apparent porosity were 4.2, 4.5, 4.4 and 4.5 g/cm3and 3.4, 2.1, 2.2 and 2.4% for the sintering temperatures of 900, 1000, 1100 and 1200°C respectively. The formation of the ferrite phase Ni0,5Zn0,5Fe2O4been identified for all conditions of sintering, with grain sizes of 52, 62, 71 and 58nm and saturation magnetization values of 63, 68, 69 and 27 emu/g to temperatures sintering 900, 1000, 1100 and 1200°C respectively.


2013 ◽  
Vol 423-426 ◽  
pp. 885-889 ◽  
Author(s):  
Yi Gao Yuan ◽  
Jian Jun Ding ◽  
Yan Kun Wang ◽  
Wei Quan Sun

The carburizing heat treatments of ultrafine-grained WC-Co composites with sub-stoichiometric carbon content were carried out, and the microstructures of ultrafine-grained WC-Co carbides before and after treated were characterized by means of scanning electron microscopy and X-ray diffraction. The results show that the functionally gradient ultrafine-grained WC-Co hardmetals with a Co depleted surface and not comprising the η-phase can be fabricated by carburizing heat treatment. After heat treatment, WC grain sizes in materials are still at the ultrafine grade.


2007 ◽  
Vol 336-338 ◽  
pp. 1642-1645 ◽  
Author(s):  
Tong Jun Liu ◽  
De An Yang ◽  
Li Zhi Di

The β-TCP granules with the range of diameter from 314μm to 800μm were prepared. The β-TCP/HAP composite bioceramics were prepared by dipping β-TCP discs made from the granules in HAP sol. The component and morphology of the ceramics were observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The compressive strength of specimens was tested by Testometric M350-20KN. The results show that the samples can be calcined at 1150°C without phase transformation of β-TCP to α-TCP by doping the β-TCP with 1wt% MgO. And the compressive strength of the composite ceramics reaches 24MPa.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
Howard S. Kaufman ◽  
Keith D. Lillemoe ◽  
John T. Mastovich ◽  
Henry A. Pitt

Gallstones contain precipitated cholesterol, calcium salts, and proteins. Calcium (Ca) bilirubinate, palmitate, phosphate, and carbonate occurring in gallstones have variable morphologies but characteristic windowless energy dispersive x-ray (EDX) spectra. Previous studies of gallstone microstructure and composition using scanning electron microscopy (SEM) with EDX have been limited to dehydrated samples. In this state, Ca bilirubinates appear as either glassy masses, which predominate in black pigment stones, or as clusters, which are found mostly in cholesterol gallstones. The three polymorphs of Ca carbonate, calcite, vaterite, and aragonite, have been identified in gallstones by x-ray diffraction, however; the morphologies of these crystals vary in the literature. The purpose of this experiment was to study fresh gallstones by environmental SEM (ESEM) to determine if dehydration affects gallstone Ca salt morphology.Gallstones and bile were obtained fresh at cholecystectomy from 6 patients. To prevent dehydration, stones were stored in bile at 37°C. All samples were studied within 4 days of procurement.


2016 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Budi Setiawan ◽  
Erizal Zaini ◽  
Salman Umar

Sebuah penelitian tentang sistem dispersi padat dari asiklovir dengan poloxamer 188 telah dilakukan formulasi dengan pencampuran secara fisika dengan rasio 1 : 1, 1 : 3, 1 : 5 dan dispersi padat 1 : 1, 1 : 3, 1 : 5 dan penggilingan 1:1 sebagai pembanding. Dispersi padat dibuat menggunakan metode pencairan (fusi), yang digabung dengan poloxamer 188 pada hotplate kemudian asiklovir dimasukkan ke dalam hasil poloxamer 188 lalu di kocok hingga membentuk masa homogen. Semua formula yang terbentuk termasuk asiklovir poloxamer 188 murni dianalisis karakterisasinya dengan Differential Thermal Analysis (DTA), X-ray Diffraction, Scanning Electron Microscopy (SEM), dan Fourier Transform Infrared (FTIR), kemudian pengambilan dilakukan  (penentuan kadar) mengunakan spektrofotometer UV pada panjang gelombang 257,08 nm dan uji laju disolusi dengan aquadest bebas CO2 menggunakan metode dayung. Hasil pengambilan  (penentuan kadar) menunjukkan bahwa semua formula memenuhi persyaratan farmakope Amerika edisi 30 dan farmakope Indonesia edisi 4 yaitu 95-110%. Sedangkan hasil uji laju disolusi untuk campuran fisik 1: 1, dan dispersi padat 1: 1, dan penggilingan 1: 1 menunjukkan peningkatan yang nyata dibandingkan asiklovir murni. Hal ini juga dapat dilihat dari hasil perhitungan statistik  menggunakan analisis varian satu arah  SPSS 17.


Sign in / Sign up

Export Citation Format

Share Document