Study of Temperature Sintering by Microwave Energy in Ferrites Ni0,5Zn0,5Fe2O4

2014 ◽  
Vol 775-776 ◽  
pp. 410-414 ◽  
Author(s):  
Verônica Cristina Souza Diniz ◽  
Débora A. Vieira ◽  
Ruth Herta Goldsmith Aliaga Kiminami ◽  
Daniel Cornejo ◽  
Ana Cristina Figueiredo de Melo Costa

This study proposes to evaluate the influence of the variation of sintering temperature on microstructural characteristics and magnetic ferrite Ni0,5Zn0,5Fe2O4sintered by microwave energy. The samples were sintered at 900, 1000, 1100 and 1200°C for exposure time of 10 minutes, with rate 50°C/minutes and characterized by density and porosity, X-ray diffraction, scanning electron microscopy and magnetic measurements. The results indicate that the values of density and apparent porosity were 4.2, 4.5, 4.4 and 4.5 g/cm3and 3.4, 2.1, 2.2 and 2.4% for the sintering temperatures of 900, 1000, 1100 and 1200°C respectively. The formation of the ferrite phase Ni0,5Zn0,5Fe2O4been identified for all conditions of sintering, with grain sizes of 52, 62, 71 and 58nm and saturation magnetization values of 63, 68, 69 and 27 emu/g to temperatures sintering 900, 1000, 1100 and 1200°C respectively.

2015 ◽  
Vol 5 (01) ◽  
pp. 31
Author(s):  
Resky Irfanita ◽  
Asnaeni Ansar ◽  
Ayu Hardianti Pratiwi ◽  
Jasruddin J ◽  
Subaer S

The objective of this study is to investigate the effect of sintering temperature on the synthesis of SiC produced from rice husk ash (RHA) and 2B graphite pencils. The SiC was synthesized by using solid state reaction method sintered at temperatures of 750°C, 1000°C and 1200°C for 26 hours, 11.5 hours and 11.5 hours, respectively. The quantity and crystallinity level of SiC phase were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC was examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The XRD results showed that the concentration (wt%) of SiC phase increases with the increasing of sintering temperature. SEM results showed that the crystallinity level of SiC crystal is improving as the sintering temperature increases


2014 ◽  
Vol 915-916 ◽  
pp. 933-941 ◽  
Author(s):  
Zhong Jie Zhang ◽  
Chang Yu Lu ◽  
Wei Huang ◽  
Wei Sheng Guan ◽  
Yue Xin Peng

The effective remove to tetracycline still remains a big challenge for scientists. In this work, we used a new method for preparing functional magnetic CNTS with ferrite nanoparticles. A wide range of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and magnetic measurements were applied to characterize the obtained Fe2O3/CNTs. Moreover, we have also studied the properties of adsorbent to tetracycline. In addition, we have found that the Fe2O3/CNTs are better reusable adsorbent than other traditional adsorbents by magnetic separation recycling method.


2016 ◽  
Vol 680 ◽  
pp. 257-260
Author(s):  
Meng Yun Dong ◽  
Cheng Zhang ◽  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Dan Yu Jiang

CaF2 nano-power was prepared by direct precipitation methods with Ca(NO3)2 and KF as raw materials. The influences of presintering temperature and sintering temperature on the particle size and distribution of CaF2 nano-power were studied by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). This study provided an experimental method for preparation of CaF2 nano-power. The results show that the best presintering temperature of CaF2 nano-power is 500°C and the best sintering temperature of CaF2 ceramic is 900°C.


2012 ◽  
Vol 557-559 ◽  
pp. 839-844 ◽  
Author(s):  
Gao Xiang Du ◽  
Ran Fang Zuo ◽  
Wei Juan Guo ◽  
Jing Hui Liao

Based on the background that large amount of iron ore tailings are stockpiled in China, the utilization of iron ore tailings to prepare sintering brick was studied. The main objective of this paper was to investigate the influence of sintering temperature on sintering bricks from iron ore tailings, in the presence of clay, coal refuses and bentonite. Sintering bricks were prepared at different temperature with 40 wt% iron ore tailings. Drying was investigated as well as the loss on ignition, bulk density and compressive strength of the specimens. Their mechanical and microstructure properties were also investigated by radioactivity, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that compressive strengths of the specimens produced were higher than that required by the standards MU20 of GB5101-2003, up to 128.0Mpa at 1100°C corresponding to its higher bulk density completely.


2014 ◽  
Vol 215 ◽  
pp. 158-162
Author(s):  
Liudmila E. Bykova ◽  
V.G. Myagkov ◽  
I.A. Tambasov ◽  
O.A. Bayukov ◽  
Victor S. Zhigalov ◽  
...  

A simple method for obtaining ZnO-Fe3O4 nanocomposites using solid-state reaction Zn + 3Fe2O3 ZnO + 2Fe3O4 is suggested. An analysis of the characteristics and properties of ZnO-Fe3O4 nanocomposites was carried out by a combination of structural and physical methods (X-ray diffraction, scanning electron microscopy, photoelectron spectroscopy, Mössbauer measurements, X-ray fluorescent analysis, and magnetic measurements). The magnetization of the hybrid ZnO-Fe3O4 films is equal to 440 emu/cm3. The resulting Fe3O4 nanoparticles are surrounded by a ZnO shell and have sizes ranging between 20 and 40 nm.


2008 ◽  
Vol 55-57 ◽  
pp. 209-212 ◽  
Author(s):  
Theerachai Bongkarn ◽  
P. Panya

(Pb0.925Ba0.075)TiO3 (PBT) ceramics have been prepared using a mixed oxide technique. The phase formation and morphology were studied in detail via X-ray diffraction (XRD) and scanning electron microscopy (SEM). The pure tetragonal perovskite structure was discovered with calcination temperatures above 800 oC. The percentage of perovskite phase and particle size tends to increase with the increasing of calcination temperatures. The PBT ceramics sintered at various temperatures belonged to a pure tetragonal perovskite phase. The average grain sizes increased from 0.90 to 6.44 µm with the increase of sintering temperatures from 1100 to 1200 oC. The highest density was obtained from the sample that sintered at 1150 and 1200 oC


2015 ◽  
Vol 655 ◽  
pp. 68-71
Author(s):  
Yuan Yuan Zhu ◽  
Jin Jia ◽  
Ai Guo Zhou ◽  
Li Bo Wang ◽  
Qing Feng Zan

Layered ternary compounds Ti3SiC2combines attractive properties of both ceramics and metals, and has been suggested for potential engineering applications. Near-fully dense Ti3SiC2bulks were sintered from commercial Ti3SiC2powders by hot press at 1350°C-1600°C for 60-120min under Ar atmosphere in this paper. The phase compositions and morphology of the as-prepared samples were evaluated by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). And the mechanical properties were measured by Three-Point bending method. It was found that the Ti3SiC2had only a little of decomposition at sintering temperature above 1350°C. And effects of sintering temperature and holding time on the morphology of the bulk Ti3SiC2are not obvious. Relative density of 98% and flexural strength of 480MPa were obtained for the Ti3SiC2samples sintered at 30MPa and 1400°C for 90min.


2020 ◽  
Vol 8 (1) ◽  
pp. 93-100
Author(s):  
Ediman Ginting Suka ◽  
◽  
Ira Sudarsono Putri ◽  
Reka Puspitasari ◽  
Reza Arsela ◽  
...  

Composite of rice husk and asphalt silica was carried out at a ratio of 1: 0.7; 1: 0.8 and 1: 0.9 and heated at 150oC for 3 hours. The characteristics of the phase structure, microstructure, and functional groups were analyzed using X-ray Diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) and Fourier Transform Infrared (FTIR), physical properties analysis (density, porosity) and mechanics (compressive strength). The XRD results showed that the phase in asphalt silica composites detected amorphous carbon at 2θ = 18º and amorphous silica with the amorphous silica peak shifted from 2θ = 22º to 2θ = 20º. Microstructure analysis shows that cracks and clusters are bigger with grain sizes of 7,742 µm, 8,495 µm and 10,921 µm respectively, and the sample composition shows percentage of silicon (Si), Oxygen (O) and sodium (Na), respectively. decreases and the percentage of carbon (C), sulfur (S) increases. The results of FTIR show that the functional groups of Si-OH, Si-O-Si and Si-O bonds are decreasing and the functional groups of C-H bonds are increasing. The addition of asphalt causes the value of density increases, the value of porosity and compressive strength decreases.


2013 ◽  
Vol 454 ◽  
pp. 288-291 ◽  
Author(s):  
Jian An Liu ◽  
Mei Mei Zhang ◽  
Xue Na Yang

A novel porous ferromagnetic glass-ceramic has been synthesized with glassceramic and hydroxyapatite for hyperthermia application. The glassceramic was obtained from a melt derived glass, and the hydroxyapatite was prepared via precipitation method with biological template (YEAST). Both components of such a mixture were sintered at 1000 °C for 1 hour in graphite. The sample was characterized by x-ray diffraction, scanning electron microscopy and magnetic measurements. This material exhibited magnetic behavior and porosity. The results show that porous ferromagnetic glass-ceramic, which saturation magnetization (Ms) of about 25 A·m2/kg and diameter of porous 30-50μm, was obtained.


2013 ◽  
Vol 856 ◽  
pp. 197-200
Author(s):  
Adel Sakri ◽  
Ahmed Boutarfaia

View of the importance that has the development in the field of advanced technology transmission in human life, smart materials draws the attention of many researchers. In this contribution, we are interested in synthesizing a new smart material of the ceramic type based on Pb, Zr, Ti (PZT) doped La in the site A, and Sb, Zn in site B from a solid solution of pure oxides. The synthesized samples are thermally treated at 800°C. The techniques of x-ray diffraction (XRD) and SEM (scanning electron microscopy) are used to characterize the microstructure (the crystallographic phase), and the densities of the obtained samples were determined from their weights and volumes. The effect of sintering temperature on the microstructure properties was studied.


Sign in / Sign up

Export Citation Format

Share Document