scholarly journals Safety assessment of corrosion-defective natural gas pipeline under ground overload based on FEM

Author(s):  
T, Zheng ◽  
Z. Liang ◽  
J. Zhang ◽  
S. Tang ◽  
X. Xiao

Aiming at the safety problem of the pipeline containing corrosion defects caused by ground overload, a novel method is developed to assess the safety of buried pipelines with corrosion defects and predict the failure pressure. The effects of parameters including internal pressure, ground overload, length of the loading area, corrosion defect depth, buried depth and soil Young’s modulus, are discussed. Ground overload greatly increases the von Mises stress and strain at the corrosion defect location and decreases the internal pressure threshold. The von Mises stress and strain are an obvious nonlinear relationship with internal pressure. The high stress and strain area expand along the diagonal direction of the defect area. The local stress and strain concentration at the corrosion defect increases with the increase of ground overload, length of the loading area and corrosion defect depth, which reduces the failure pressure of the pipeline. Increasing the buried depth and soil Young’s modulus would effectively reduce local stress and strain concentration, and increase the failure pressure of the pipeline. The pipeline settlement displacement increases with the increase of internal pressure, ground overload, length of the loading area, and decreases with the increase of pipeline buried depth and soil Young’s modulus.

2016 ◽  
Vol 842 ◽  
pp. 178-185 ◽  
Author(s):  
Maria Fransisca Soetanto ◽  
Rachmad Imbang Tritjahjono

This paper consists of the design and analysis of the strength of material composite of the fuselage of a Belly-Landing Mini Unmanned Aerial Vehicle (UAV). A belly landing UAV occurs when an UAV lands without its landing gear and uses its underside, or belly, as its primary landing device. Belly landings carry the risk that the UAV may flip over, disintegrate, or catch fire if it lands too fast or too hard [1], so the more important designs parameters for materials used are the specific strength and specific stiffness. Specific strength is defined as the ultimate tensile strength divided by material density, and specific stiffness is defined as Young’s modulus of the material divided by density [Franklin, 2010]. The aim of this Belly Landing Mini UAV is for used in situations where manned flight is considered too risky or difficult and no runway for take-off or landing, such as fire fighting surveillance, while the term 'mini’ means the design of this UAV has a launch mass greater than 100 grams but less than 100 kilograms [2], the objective of this project is the development and design of materials fuselage of a mini UAV with two layer sandwich structures made from composite materials and epoxy resin. For that purposes, 3 variations of the composite materials tensile test specimens have been manufactured in accordance with ASTM D3039 standard and tested its strength. The results showed that the fibre glass and fibre carbon composite with resin epoxy has the maximum tensile strength and Young’s modulus, so that the fabrication and manufacturing of the fuselage component is made by using that material composite. The Von Mises stress is used to predict yielding of materials under any loading condition from results of simple uniaxial tensile tests by using software Autodesk Inventor 2012. The results show that the design is safe caused the strength of material is greater than the maximum value of Von Mises stress induced in the material. The results of flight tests show that this small UAV has successfully manoeuvred to fly, such as take off, some acrobatics when cruising and landing smoothly, which means that the calculation and analysis of structure and material used on the fuselage of the Mini UAV was able to be validated.


2019 ◽  
Vol 10 ◽  
pp. 1588-1595 ◽  
Author(s):  
Kang Xia ◽  
Haifei Zhan ◽  
Aimin Ji ◽  
Jianli Shao ◽  
Yuantong Gu ◽  
...  

The excellent mechanical properties of graphyne (GY) have made it an appealing candidate in the field of impact protection. We assessed the deformation mechanisms of monolayer GY nanosheets of different morphologies, including α-GY, β-GY, γ-GY and 6612-GY, under supersonic-velocity impacts (from 1 to 6 km/s) based on in silico studies. Generally, cracks initiate at the geometry center and the nanosheet experiences significant out-of-plane deformation before the propagation of cracks. Tracking the atomic von Mises stress distribution, it is found that its cumulative density function has a strong correlation with the magnitude of the Young’s modulus of the GYs. For nanosheets with a higher Young’s modulus, it tends to transfer momentum at a faster rate. Thus, a better energy dissipation or delocalization is expected during impact. This study provides a fundamental understanding of the deformation and penetration mechanisms of monolayer GY nanosheets under impact, which is crucial in order to facilitate their emerging applications for impact protection.


Biosensors ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 67
Author(s):  
Song Joo Lee ◽  
Yong-Eun Cho ◽  
Kyung-Hyun Kim ◽  
Deukhee Lee

Knowing the material properties of the musculoskeletal soft tissue could be important to develop rehabilitation therapy and surgical procedures. However, there is a lack of devices and information on the viscoelastic properties of soft tissues around the lumbar spine. The goal of this study was to develop a portable quantifying device for providing strain and stress curves of muscles and ligaments around the lumbar spine at various stretching speeds. Each sample was conditioned and applied for 20 repeatable cyclic 5 mm stretch-and-relax trials in the direction and perpendicular direction of the fiber at 2, 3 and 5 mm/s. Our device successfully provided the stress and strain curve of the samples and our results showed that there were significant effects of speed on the young’s modulus of the samples (p < 0.05). Compared to the expensive commercial device, our lower-cost device provided comparable stress and strain curves of the sample. Based on our device and findings, various sizes of samples can be measured and viscoelastic properties of the soft tissues can be obtained. Our portable device and approach can help to investigate young’s modulus of musculoskeletal soft tissues conveniently, and can be a basis for developing a material testing device in a surgical room or various lab environments.


Author(s):  
Mostafa Omran Hussein ◽  
Mohammed Suliman Alruthea

Abstract Objective The purpose of this study was to compare methods used for calculating heterogeneous patient-specific bone properties used in finite element analysis (FEA), in the field of implant dentistry, with the method based on homogenous bone properties. Materials and Methods In this study, three-dimensional (3D) computed tomography data of an edentulous patient were processed to create a finite element model, and five identical 3D implant models were created and distributed throughout the dental arch. Based on the calculation methods used for bone material assignment, four groups—groups I to IV—were defined. Groups I to III relied on heterogeneous bone property assignment based on different equations, whereas group IV relied on homogenous bone properties. Finally, 150 N vertical and 60-degree-inclined forces were applied at the top of the implant abutments to calculate the von Mises stress and strain. Results Groups I and II presented the highest stress and strain values, respectively. Based on the implant location, differences were observed between the stress values of group I, II, and III compared with group IV; however, no clear order was noted. Accordingly, variable von Mises stress and strain reactions at the bone–implant interface were observed among the heterogeneous bone property groups when compared with the homogenous property group results at the same implant positions. Conclusion Although the use of heterogeneous bone properties as material assignments in FEA studies seem promising for patient-specific analysis, the variations between their results raise doubts about their reliability. The results were influenced by implants’ locations leading to misleading clinical simulations.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3127
Author(s):  
Feng Dai ◽  
Dandan Zhao ◽  
Lin Zhang

The effect of vacancy defects on the structure and mechanical properties of semiconductor silicon materials is of great significance to the development of novel microelectronic materials and the processes of semiconductor sensors. In this paper, molecular dynamics is used to simulate the atomic packing structure, local stress evolution and mechanical properties of a perfect lattice and silicon crystal with a single vacancy defect on heating. In addition, their influences on the change in Young’s modulus are also analyzed. The atomic simulations show that in the lower temperature range, the existence of vacancy defects reduces the Young’s modulus of the silicon lattice. With the increase in temperature, the local stress distribution of the atoms in the lattice changes due to the migration of the vacancy. At high temperatures, the Young’s modulus of the silicon lattice changes in anisotropic patterns. For the lattice with the vacancy, when the temperature is higher than 1500 K, the number and degree of distortion in the lattice increase significantly, the obvious single vacancy and its adjacent atoms contracting inward structure disappears and the defects in the lattice present complex patterns. By applying uniaxial tensile force, it can be found that the temperature has a significant effect on the elasticity–plasticity behaviors of the Si lattice with the vacancy.


Author(s):  
Robert Adamski ◽  
A. Adamska ◽  
Z. Pakowski

Gypsum is a popular building material. Drying and rewetting of gypsum is a process of practical importance. This work presents the experimental results of kinetic of drying, heating and internal pressure development in rewetted gypsum cylinders. Analysis of the observed changes is presented. Additionally sorption isotherms, permeability and dependence of Young’s modulus on moisture content were measured. These data will be used in the model of the process under development.   Keywords: internal pressure, permeability, Young’s modulus 


1976 ◽  
Vol 98 (4) ◽  
pp. 1152-1156 ◽  
Author(s):  
J. P. Eimermacher ◽  
I.-Chih Wang ◽  
M. L. Brown

The deformation theory of plasticity is considered as a means for obtaining a solution to the problem of calculating stress and strain concentration factors at geometric discontinuities where the local stress state exceeds the yield strength of the material. Through the use of the Hencky-Nadai constitutive law and the Von Mises failure criteria, the elastoplastic element stiffness matrix is derived for a plane stress triangular plate element. An elastoplastic solution is arrived at by considering direct-iterative and finite element techniques. Verification of the analytical results is obtained by considering a numerical example and comparing the calculated results with published experimental and analytical data.


2015 ◽  
Vol 813-814 ◽  
pp. 586-591 ◽  
Author(s):  
Kottakota Kalasagarreddi ◽  
Prem Sai Koppuravuri Sobhan ◽  
Vinay Kumar Gundu ◽  
S.R. Nagaraja

Due to their complexity, certain engineering problems like finding shock strength, Mach number etc. and the interaction of shock wave with a structure in free and restricted metal forming techniques cannot be achieved in a single experimentation, these can be obtained only through a number of trials and that leads to increase in cost and time. In such cases both cost and time can be reduced by adopting numerical simulations. In this projectcommercial software ANSYS is used to simulate the propagation shock wave through a shock tube, free and shape forming of metallic plates subjected to this shock wave. Shock Mach numbers up to 2.12 have been generated by varying the driver to driven pressure ratios. Thin copper plates of diameter 60mm and thickness of 0.5mm and 0.3mm are subjected to shock wave loadingin order to form into dies.These dies,madeof structural steel are modelled with pre-defined shapes. The plate peakoverpressures ranging from 9 to 20bar have been generated.The midpoint deflection, Von Mises stress and strain are calculated for free forming copper plates. The simulated results are compared with the experimental values available in literature. The simulated results match well with the experimental values.


Sign in / Sign up

Export Citation Format

Share Document