scholarly journals Experimental study of σ - ε diagrams of concrete under uniaxial compression and the influence of freezing and thawing cycles on the form of the diagrams

Author(s):  
V. M. Popov ◽  
◽  
M. G. Plyusnin ◽  

As a result of the experimental study, there was estimated the variability of the form of complete diagrams σ-ε of concrete under uniaxial compression. It is shown that the coefficients of variation of concrete deformation characteristics are comparable with the coefficient of variation of strength within one concrete class in terms of compressive strength. It was found out that the effect of freezing and thawing cycles leads not only to a decrease in the compressive strength of concrete, but also to a decrease in the ultimate deformations and the initial modulus of elasticity. Thus, when using diagram methods for calculating reinforced concrete structures, it is necessary to take into account the influence of variability not only in the strength, but also in the deformation characteristics of concrete.

2014 ◽  
Vol 507 ◽  
pp. 254-257 ◽  
Author(s):  
Li Kun Qin ◽  
Ling Xia Gao ◽  
Hong Wei Song ◽  
Xiu Wei Wang

The experiments of concrete in seawater under 0, 25, 50, 75 and 100 freezing-thawing cycles were performed using fast freezing and thawing method. Appling large concrete static and dynamic triaxial test system, the influence of freezing and thawing cycles on compressive strength and strain at peak stress point of concrete in seawater were detected, and then simple mathematical expressions were established.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


2015 ◽  
Vol 754-755 ◽  
pp. 348-353 ◽  
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Mustaqqim Abdul Rahim ◽  
Khairul Nizar Ismail ◽  
Roshazita Che Amat ◽  
...  

Compressive strength of concrete is the major mechanical properties of concrete that need to be focused on. Poor compressive strength will lead to low susceptibility of concrete structure towards designated actions. Many researches have been conducted to enhance the compressive strength of concrete by incorporating new materials in the concrete mixture. The dependencies towards natural resources can be reduced. Therefore, this paper presents the results of an experimental study concerning the incorporation of artificial lightweight bubbles aggregate (LBA) into cementations mixture in order to produce comparable compressive strength but at a lower densities. Three concrete mixtures containing various percentages of LBA, (10% - 50% of LBA) and one mixture used normal aggregate (NA) were prepared and characterized. The compressive strength of LBA in concrete was identified to be ranged between 39 MPa and 54 MPa. Meanwhile, the densities vary between 2000 kg/m3 to 2300 kg/m3.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
H. M. A. Mahzuz ◽  
Md. Mehedi Hasan Bhuiyan ◽  
Nursat Jahan Oshin

2019 ◽  
Vol 252 ◽  
pp. 08007 ◽  
Author(s):  
Jacek Góra ◽  
Danuta Barnat-Hunek ◽  
Paweł Wlaź ◽  
Monika Garbacz

The article presents the results of testing physical and strength properties of concrete with the addition of lightweight perlite in the amount of 10 and 20%. The additive was introduced by volume substituting a part of the sand. In addition, the effect of using siloxane admixtures and a vinyl acetate copolymer with different degree of dosing, as well as applied simultaneously, were analysed. The tests were carried out in the field of bulk density and proper density, determination of tightness and porosity, compressive strength and tensile strength after 28 days of maturation. In terms of durability of concrete, absorption and resistance of concretes to the freeze-up effects after 100 freezing and thawing cycles were tested. The results of the study were subjected to statistical analysis using the analysis of variance. The analysed factors of influence were the amount of perlite addition, as well as the type and amount of the added admixture


2014 ◽  
Vol 584-586 ◽  
pp. 1563-1567 ◽  
Author(s):  
Bang Hua Xie ◽  
Chun Tao Wang ◽  
Min Fu Fu ◽  
Yun Sheng Li

In order to investigate the effect of Nano-SiO2 on the compressive strength of concrete, the paper studies the effect of different mixing ratios (0%~3%) on the compressive strength, and the effect of age on the compressive strength of nano-concrete. Research shows that the incorporation of Nano-SiO2 increased the compressive strength of concrete: it increases slowly with the mixing ratio 0%~1%; the growth rate is declining when the mixing ratio is 1.5%~3%; the optimal mixing ratio is 1.0~1.5%, which can replace 3.33~10% of cement.


2021 ◽  
Vol 328 ◽  
pp. 10006
Author(s):  
Daud Andang Pasalli ◽  
Dina Limbong Pamuttu ◽  
Rahmat Fajar Septiono ◽  
Chitra Utary ◽  
Hairulla Hairulla

The use of lightweight concrete materials in Indonesia, especially in the Merauke Regency area can be an alternative amid the rapid development of the housing sector. In this experimental study, the author took the initiative to replace coarse aggregate with wood charcoal as light coarse aggregate. The purpose of this study was to determine the value of compressive strength and to determine whether the wood charcoal material met the standard of lightweight concrete coarse aggregate. Planning the proportion of lightweight concrete mixture in this study using a volume ratio between cement, sand and wood charcoal of 1: 2, 1: 2: 2.5 and 1: 2: 5 with variations of test days at 3, 7, 14, 21 and 28 day. From the results of the compressive strength test of lightweight concrete, the use of wood charcoal aggregate as coarse aggregate in concrete causes the value of the compressive strength of concrete to decrease.


Sign in / Sign up

Export Citation Format

Share Document