scholarly journals Biochar addition affected nutrient leaching and litter decomposition rates in boreal sandy soils

2020 ◽  
Vol 29 (4) ◽  
Author(s):  
Sanna Saarnio ◽  
Riitta Kettunen

Effects of biochar addition on litter decomposition rates, nutrient leaching and soil moisture were tested in two boreal agricultural soils; a sandy till and a medium fine sand. Three litter bags were buried in soil basins, which were stored in the dark for 31 and 19 weeks in the sandy till experiment and medium fine sand experiment, respectively. Once per each temperature period, the soil was saturated in order to collect excess water for nutrient analyses. Biochar increased the decomposition rate of N-rich litter but did not affect the decomposition of N-poor litter. PO43--P and NO2--N were released from the biochar to the leached water and thus leaching of PO43--P, NO2--N and total P was increased in the soil with the finer texture. However, biochar retained water after heavy irrigation and leaching of PO43--P and total P was not increased on the coarser soil. Although pure biochar adsorbed NH4+-N from nutrient solutions, NH4+-N leaching from both soil types was generally not affected by biochar. Leaching of nitrate NO3--N and total N was decreased on both soils due to retention by the biochar.


FLORESTA ◽  
2021 ◽  
Vol 51 (4) ◽  
pp. 803
Author(s):  
Maria Clécia Gomes Sales ◽  
Milton César Costa Campos ◽  
Elilson Gomes de Brito Filho ◽  
Luís Antônio Coutrim Dos Santos ◽  
José Maurício Da Cunha ◽  
...  

The soils of the Amazon region, despite being under one of the densest forests in the world, are mostly characterized by low nutrient availability, with litter being the main nutrient input route. The present work aimed to evaluate the litter decomposition in forest, Cerrado and Cerradão environments in the Amazon. The litter decomposition rate was estimated by mass loss analysis using litter bags. The collections were performed at intervals of 30, 60, 90, 120, 150, 180, 210, 240, 270 and 300 days, with four replications. Once collected, the material contained in each litter bag was placed to dry to obtain the dry mass. And so, the remaining mass percentage, the decomposition rates (k) and the half-life time (t1/2) are estimated. During the studied period, the Cerrado environment presented the lowest constant k (0.0017 g g-1 day-1) and consequently longer half-life (407 days). The monthly deposition in Cerrado input ranged from Mgha-1mother1 (June to September). Among the evaluated environments, the forest presented the highest decomposition speed and Cerrado presented the lowest one. It was evidenced that the decomposition process for all studied environments occurred with greater intensity in the rainy season.



HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 670b-670
Author(s):  
Y.C. Li ◽  
P.J. Stoffella ◽  
A.K. Alva ◽  
D.V. Calvert ◽  
D.A. Graetz

Compost amendment to agricultural soils has been shown to either reduce disease incidence, conserve soil moisture, control weeds or improve soil fertility. Application of compost can range from 5 to 250 Mt·ha–1 (N content up to 4%). Large application of compost with high N and P levels may result in excessive leaching of nitrate, ammonium, and phosphate into groundwater. It could be a serious concern on the east coast of Florida with its high annual rainfall and shallow water table. In this study, five composts (sugarcane filtercake, biosolids, and mixtures of municipal solid wastes and biosolids) were collected from different facilities throughout Florida. Composts were applied on a surface of 15-cm sandy soil columns at the rate of 100 Mt·ha–1 on the surface basis and leached with deionized water by 300 ml·d–1 for 5 days (equivalent to 34 cm rainfall). The concentrations of NO3-N, NH4-N, and PO4-P in leachates reached as high as 246, 29, and 142 mg·L–1, respectively. The amount of N and P leached following 5-day leaching events accounted for 3.3% to 15.8% of total N and 0.2% to 2.8% of total P as inorganic forms.



1983 ◽  
Vol 13 (1) ◽  
pp. 116-121 ◽  
Author(s):  
Ranjit S. Gill ◽  
Denis P. Lavender

Urea, gypsum-coated urea, and calcium nitrate fertilizers differentially affected indigenous rates of litter decomposition on the forest floor for coastal stands of western hemlock (Tsugaheterophylla (Raf.) Sarg.). These differences were most pronounced during the first 6 months after fertilization. Urea and gypsum-coated urea both stimulated the rates of litter decomposition, although the effect of gypsum-coated urea was more gradual. In contrast, calcium nitrate somewhat retarded existing decomposition rates during the first 6 months; after 12 months, it had little or no impact. The significant (P < 0.05) positive correlation of percentage of lignin in litter with time renders it an important qualitative measure of decomposition rates in studies utilizing litter bags.



1974 ◽  
Vol 52 (10) ◽  
pp. 2157-2163 ◽  
Author(s):  
Roger Suffling ◽  
David W. Smith

A modified method of measuring litter decomposition using mesh bags is suggested in which the bags are reused during several time increments. The chief objections to this method are that litter may be lost through spillage and that repeated artificial drying may affect decomposition rates. Experimental results are presented to show that spillage represents a significant source of error with finely divided litter, even using conventional litter bag methods. A method for handling litter bags is suggested in which corrections may be made for spillage. In a second experiment it was found that decomposition rates were not significantly altered by repeated artificial drying of old-field litter so that repeated drying of litter in field experiments may be valid.



Soil Systems ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 44
Author(s):  
Wilfried Dossou-Yovo ◽  
Serge-Étienne Parent ◽  
Noura Ziadi ◽  
Élizabeth Parent ◽  
Léon-Étienne Parent

In cranberry production systems, stands are covered by 1–5 cm of sand every 2–5 years to stimulate plant growth, resulting in alternate layers of sand and litter in soil upper layers. However, almost intact twigs and leaves remain in subsurface layers, indicating a slow decomposition rate. The Tea Bag Index (TBI) provides an internationally standardized methodology to compare litter decomposition rates (k) and stabilization (S) among terrestrial ecosystems. However, TBI parameters may be altered by time-dependent changes in the contact between litter and their immediate environment. The aims of this study were to determine the TBI of cranberry agroecosystems and compare it to the TBI of other terrestrial ecosystems. Litters were standardized green tea, standardized rooibos tea, and cranberry residues collected on the plantation floor. Litter decomposition was monitored during two consecutive years. Added N did not affect TBI parameters (k and S) due to possible N leaching and strong acidic soil condition. Decomposition rates (k) averaged (mean ± SD) 9.7 × 10−3 day−1 ± 1.6 × 10−3 for green tea, 3.3 × 10−3 day−1 ± 0.8 × 10−5 for rooibos tea, and 0.4 × 10−3 day−1 ± 0.86 × 10−3 for cranberry residues due to large differences in biochemical composition and tissue structure. The TBI decomposition rate (k) was 0.006 day−1 ± 0.002 in the low range among terrestrial ecosystems, and the stabilization factor (S) was 0.28 ± 0.08, indicating high potential for carbon accumulation in cranberry agroecosystems. Decomposition rates of tea litters were reduced by fractal coefficients of 0.6 for green tea and 0.4 for rooibos tea, indicating protection mechanisms building up with time in the tea bags. While the computation of the TBI stabilization factor may be biased because the green tea was not fully decomposed, fractal kinetics could be used as additional index to compare agroecosystems.



Author(s):  
Trần Thanh Đức

This research carried out in Huong Vinh commune, Huong Tra town, Thua Thien Hue province aimed to identify types of land use and soil characteristics. Results showed that five crops are found in Huong Vinh commune including rice, peanut, sweet potato, cassava and vegetable. There are two major soil orders with four soil suborders classified by FAO in Huong Vinh commune including Fluvisols (Dystric Fluvisols<em>, </em>Gleyic Fluvisols and Cambic Fluvisols) and Arenosols (Haplic Arenosols). The results from soil analysis showed that three soil suborders including Dystric Fluvisols<em>, </em>Gleyic Fluvisols and Cambic Fluvisols belonging to Fluvisols were clay loam in texture, low pH, low in OC, total N, total P<sub>2</sub>O<sub>5</sub> and total K<sub>2</sub>O. Meanwhile, the Haplic Arenosols was loamy sand in texture, poor capacity to hold OC, total N, total P<sub>2</sub>O<sub>5</sub> and total K<sub>2</sub>O



HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498e-498
Author(s):  
S. Paramasivam ◽  
A.K. Alva

For perennial crop production conditions, major portion of nutrient removal from the soil-tree system is that in harvested fruits. Nitrogen in the fruits was calculated for 22-year-old `Hamlin' orange (Citrus sinensis) trees on Cleopatra mandarin (Citrus reticulata) rootstock, grown in a Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) that received various N rates (112, 168, 224, and 280 kg N/ha per year) as either i) broadcast of dry granular form (DGF; four applications/year), or ii) fertigation (FRT; 15 applications/year). Total N in the fruits (mean across 4 years) varied from 82 to 110 and 89 to 111 kg N/ha per year for the DGF and FRT sources, respectively. Proportion of N in the fruits in relation to N applied decreased from 74% to 39% for the DGF and from 80% to 40% for the FRT treatments. High percentage of N removal in the fruits in relation to total N applied at low N rates indicate that trees may be depleting the tree reserve for maintaining fruit production. This was evident, to some extent, by the low leaf N concentration at the low N treatments. Furthermore, canopy density was also lower in the low N trees compared to those that received higher N rates.



1999 ◽  
Vol 39 (12) ◽  
pp. 257-264 ◽  
Author(s):  
Hans E. Andersen ◽  
Brian Kronvang ◽  
Søren E. Larsen

An empirical leaching model was applied to data on agricultural practices at the field level within 6 small Danish agricultural catchments in order to document any changes in nitrogen (N) leaching from the root zone during the period 1989-96. The model calculations performed at normal climate revealed an average reduction in N-leaching that amounted to 30% in the loamy catchments and 9% in the sandy catchments. The reductions in N leaching could be ascribed to several improvements in agricultural practices during the study period: (i) regulations on livestock density; (ii) regulations on the utilisation of animal manure; (iii) regulations concerning application practices for manure. The average annual total N-loss from agricultural areas to surface water constituted only 54% of the annual average N leached from the root zone in the three loamy catchments and 17% in the three sandy catchments. Thus, subsurface N-removal processes are capable of removing large amounts of N leached from agricultural land. An empirical model for the annual diffuse N-loss to streams from small catchments is presented. The model predicts annual N-loss as a function of the average annual use of mineral fertiliser and manure in the catchment and the total annual runoff from the unsaturated zone.



2012 ◽  
Vol 28 (5) ◽  
pp. 437-443 ◽  
Author(s):  
Terrence P. McGlynn ◽  
Evan K. Poirson

Abstract:The decomposition of leaf litter is governed, in part, by litter invertebrates. In tropical rain forests, ants are dominant predators in the leaf litter and may alter litter decomposition through the action of a top-down control of food web structure. The role of ants in litter decomposition was investigated in a Costa Rican lowland rain forest with two experiments. In a mesocosm experiment, we manipulated ant presence in 50 ambient leaf-litter mesocosms. In a litterbag gradient experiment, Cecropia obtusifolia litter was used to measure decomposition rate constants across gradients in nutrients, ant density and richness, with 27 separate litterbag treatments for total arthropod exclusion or partial arthropod exclusion. After 2 mo, mass loss in mesocosms containing ants was 30.9%, significantly greater than the 23.5% mass loss in mesocosms without ants. In the litter bags with all arthropods excluded, decomposition was best accounted by the carbon: phosphorus content of soil (r2 = 0.41). In litter bags permitting smaller arthropods but excluding ants, decomposition was best explained by the local biomass of ants in the vicinity of the litter bags (r2 = 0.50). Once the microarthropod prey of ants are permitted to enter litterbags, the biomass of ants near the litterbags overtakes soil chemistry as the regulator of decomposition. In concert, these results support a working hypothesis that litter-dwelling ants are responsible for accelerating litter decomposition in lowland tropical rain forests.





Sign in / Sign up

Export Citation Format

Share Document