scholarly journals Thermal transient finite element computation of a mixing Tee by utilizing CFD results

2020 ◽  
Vol 53 (1) ◽  
pp. 1-11
Author(s):  
Qais Saifi ◽  
Otso Cronvall

Thermal distribution and fluctuation in any piping component due to turbulent mixing of flows with different temperatures vary greatly. Usually, computational fluid dynamics (CFD) tools are used for estimation of flows in piping components. Fatigue that results from fluctuating thermal mass flow across the components can be computed by coupling the CFD results with structural mechanics based finite element (FE) results. However, this procedure is laborious and computationally very expensive. A fluid temperature function has been developed in this paper as a function of internal wall coordinates and time by interpolating experimental or CFD results. Bicubic interpolation function has been used for accurate interpolation. Finally, a thermal transient FE analysis for an actual Tee from a nuclear power plant (NPP) was performed by using the developed fluid temperature function and interpolated CFD results.

2020 ◽  
Vol 26 (1) ◽  
Author(s):  
IONEL OLARU

<p>The heat can have a direct impact on the mechanical elements by creating deformations and by causing the induction of additional stress in them. In designing of the heat exchangers or for the electronic components, the temperature changes for structural analysis as well as structural performance of thermal impact for the entire element must be analyzed. The study from this paper proposes an analysis and a simulation of flow through the convergent-divergent nozzle type to optimize the inlet of warm fluid to have minimum impact on the nozzle walls This analysis will be performed with a computer program specialized in complex analysis of Computational Fluid Dynamics (CFD), which will also take into account the fluid temperature and its influence throughout the system.</p>


Author(s):  
Stéphane Gervais ◽  
Alexandre Girard

Nuclear power plants (NPP) include connections of branches conveying fluids at different temperatures. Some thermohydraulics phenomena such as stratification may affect the inner wall of the ducts and lead to fatigue damage. They are then defined in a conservative way for fatigue evaluation. In order to improve the definitions of these phenomena EDF plans to install thermocouples rings on the outer surfaces of some ducts. The aim of this article is to define a methodology to derive thermal loadings from outer measurements. To estimate the temperature of the inner skin duct through measurements on the outer surface of the ducts, we propose to use optimal control (with quadratic cost functions) to compare the outer temperatures calculated with a finite element model and the measurements. Different methods are investigated: first, a method based on Nelder-Mead algorithm [3] and second, an advanced method based on gradient computation. The advantage of the latter is to explicitly compute the gradient and a Hessian approximation of the cost function with respect to the water temperatures, which is time saving for computation-wise. To enhance the robustness of the methodology, additional conditions on the regularity of the fluid temperature field are added.


2020 ◽  
Vol 26 (1) ◽  
pp. 41-46
Author(s):  
IONEL OLARU

The heat can have a direct impact on the mechanical elements by creating deformations and by causing the induction of additional stress in them. In designing of the heat exchangers or for the electronic components, the temperature changes for structural analysis as well as structural performance of thermal impact for the entire element must be analyzed. The study from this paper proposes an analysis and a simulation of flow through the convergent-divergent nozzle type to optimize the inlet of warm fluid to have minimum impact on the nozzle walls This analysis will be performed with a computer program specialized in complex analysis of Computational Fluid Dynamics (CFD), which will also take into account the fluid temperature and its influence throughout the system.


Author(s):  
Lingfu Zeng ◽  
Lennart G. Jansson ◽  
Lars Dahlstro¨m

In this paper, we address fatigue verification of Class 1 nuclear power piping according to ASME Boiler & Pressure Vessel Code Section III (ASME III), NB-3600, and several relevant issues that are often discussed in connection to the power uprate of several Swedish BWR reactors in recent years. We review first the basic requirements and their verifications using finite element analysis in detail. Thereafter, we clarify a so-called simplified elastic-plastic discontinuity analysis for further verification if the basic requirements found unsatisfactory, and examine necessary computational procedures for evaluating alternating stress intensities and cumulative damage factors. Our emphasis is placed on alternative verification procedures, which do not violate the general design principles upon which ASME III NB-3600 is built, when fatigue damage usages predicted by the simplified elastic-plastic discontinuity analysis are unaccepted. An alternative which employs a non-linear finite element computation and a refined numerical approach for re-evaluating the cumulative damage factors is suggested. Concluding remarks are given.


Author(s):  
Ju¨rgen Rudolph ◽  
Steffen Bergholz

The prevention of fatigue damages in components is a major responsibility during the entire operation of every nuclear power plant. Hence, fatigue is a central concern of AREVA’s R&D activities in the view of changing boundary conditions: modification of the code based approaches, life-time extension, new plants with scheduled operating periods of 60 years (e.g. EPR, BWR1000) and improvement of disposability. Simultaneously, an integrated approach to the fatigue issue is the way to an optimization of costs and plant operation as well as a minimization of non-destructive testing requirements. The AREVA fatigue concept provides for a multiple step process against fatigue before and during the entire operation of nuclear power plants. Indeed, fatigue analyses are undertaken at the design stage and for Plant LIfe Management & Plant License EXtension (PLIM-PLEX) activities. The quality of all fatigue analyses crucially depends on the determination of the real operational loads including the high loads of the initial start-up in the commissioning phase. It has to be pointed out that mainly thermal transient loading is fatigue relevant for nuclear power plant components. AREVA utilizes a measuring system called FAMOS (Fatigue Monitoring System) recording the real transient loading continuously on site. The direct processing of the measured temperatures is used for a first fast fatigue estimation after every operational cycle. This procedure is highly automated and allows for a rough estimation of the recent partial usage factor as well as the qualitative comparability of the data (loads, fatigue damage increment). In the framework of the decennial Periodic Safety Inspection (PSI) a detailed fatigue check conforming to the code rules (e.g. [1, 2, 3]) is carried out in order to determine the current state of the plant. This fatigue check is based on the real loads (specification of thermal transient loads based on measurements) and finite element analyses in connection with the local strain approach to design against fatigue. The finite element analyses always include transient thermal determination of the temperature field and subsequent determination of (local) stresses and strains. The latter analyses might be simplified elastic plastic or fully elastic plastic. Another Code requirement is the additional check against progressive plastic deformation (ratcheting) which is demanded by the design code (e.g. [1, 2, 3]). In the case of the elastic plastic approach much care has to be taken with respect to the application of an appropriate material law. Advanced nonlinear kinematic material laws are favored at AREVA at the present time in order to carry out realistic ratcheting simulations. One alternative to this approach is the application of the so called direct method based on the shake down theorems [25]. As a conclusion, one essential benefit of the integrated AREVA fatigue concept can easily be identified: Locations of potential fatigue failure are reliably identified and all efforts can be concentrated on these fatigue critical components. Thus, expensive costs for inspection can be essentially reduced. Of course, one requirement is the application of a temperature measurement system in the power plant. The concept itself is supported and its further development is ensured by numerous R&D activities, derived methods and tools as well as the further development of design codes. For example, it is planned to integrate direct measurements of fatigue damage, more sophisticated analysis concepts for fatigue damage (application of short crack fracture mechanics to fatigue crack growth), to combine fatigue damage monitoring and models for 3D crack growth simulation and to develop an alternative approach of high cycle fatigue initiation based on damage models in the integrated AREVA concept.


2019 ◽  
Vol 48 (3) ◽  
pp. 224-248
Author(s):  
Pablo N. Zitelli ◽  
Gabriel N. Curtosi ◽  
Jorge Kuster

ABSTRACT Tire engineers are interested in predicting rolling resistance using tools such as numerical simulation and tests. When a car is driven along, its tires are subjected to repeated deformation, leading to energy dissipation as heat. Each point of a loaded tire is deformed as the tire completes a revolution. Most energy dissipation comes from the cyclic loading of the tire, which causes the rolling resistance in addition to the friction force in the contact patch between the tire and road. Rolling resistance mainly depends on the dissipation of viscoelastic energy of the rubber materials used to manufacture the tires. To obtain a good rolling resistance, the calculation method of the tire finite element model must take into account temperature changes. It is mandatory to calibrate all of the rubber compounds of the tire at different temperatures and strain frequencies. Linear viscoelasticity is used to model the materials properties and is found to be a suitable approach to tackle energy dissipation due to hysteresis for rolling resistance calculation.


2019 ◽  
Vol 128 ◽  
pp. 06003
Author(s):  
Gong-Hee Lee ◽  
June-Ho Bae

Nuclear power plant operators conduct in-service testing (IST) to verify the safety functions of safety–related pumps and valves and to monitor the degree of vulnerability over time during reactor operation. The system to which the pump and valve to be tested are installed has various sizes of orificesfor flow control and decompression. Rapid flow acceleration and accompanying pressure drop may cause cavitation inside the orifice, which may result in orifice degradation and structural damage. Though licensing applications supported by using Computational Fluid Dynamics (CFD) software are gradually increasing for IST–related problems, there is no CFD software which obtains a licensing from the domestic regulatory body until now. In this paper, to assess the prediction performance of different commercialCFD software for the analysis of cavitating flow inside a square–edged orifice, the simulation was conducted with ANSYS CFX and FLUENT R18.1. The results predicted were then compared with the measured data.


Sign in / Sign up

Export Citation Format

Share Document