scholarly journals The Effect of Calcium Carbonate Filler on Self-Compacting Concrete Using Different Aggregate Sizes

2019 ◽  
Vol 4 (9) ◽  
pp. 9-16
Author(s):  
Wasiu John ◽  
Agbawhe Okeoghene Oghenekume ◽  
Tuleun Lawrence Zahemen

In this research work, the effect of Calcium Carbonate Filler was studied on the compressive strength and the workability of self-compacting Concrete (SCC) at different grades (M60, M65 and M70) and different coarse aggregate sizes (6.3mm, 10mm and 20mm). Calcium Carbonate Filler (Limestone powder) and Rice Husk Ash (RHA) were added in percentages of 2.5% and 5% to check its effect on the workability and strength properties of SCC and Normally Vibrated Concrete. Experimental investigations were carried out on SCC and normally vibrated concrete (NVC) samples of grade M60, M65 and M70 using different aggregate sizes of 6.3mm, 10mm and 20mm. The workability test results obtained showed values within specification.  The compressive and Tensile strengths for SCC (with powder and 2.5% RHA) are higher than that with powder and 5% RHA and NVC. Generally, the use of Calcium Carbonate Filler improved the strength and densities for SCC design mix and decreased its workability. It is concluded that the use of SCC with designed Fillers ratio and RHA (≤5%) will improve the strength properties of SCC.

2021 ◽  
Vol 8 (1) ◽  
pp. C1-C10
Author(s):  
J.K. Taku ◽  
Y.D. Amartey ◽  
S.P. Ejeh ◽  
A. Lawan

This research work investigates the durability-based properties of a ternary calcined clay and limestone powder blended Self Compacting Concrete by measuring the short- and long-term permeation properties using water absorption and sorptivity properties testing. Also, the variation of compressive strength with age was evaluated at 7, 14, 28 and 56 days, while the split tensile strength was determined at 7 and 28 days curing. The Mineralogy and morphology of the ternary SCC was evaluated using FT IR Spectroscopy, SEM imaging and EDS. The results obtained shows that the ternary SCC showed improved durability and strength properties with age with dense and improved microstructure.


Self-Compacting Concrete (SCC) or Self Consolidating Concrete is the present-day concrete that is being adopted the world over. The production of SCC involves the selection of appropriate materials and good quality control which is essential for the durability of concrete. The mineral admixtures and filler materials provide additional reduction to the porosity of the concrete. The primary objective of the present research work is to carry out the experimental investigations on durability properties of SCC with 20 different mix proportions, containing various percentages of filler materials like Limestone Powder (LP) and Marble Powder (MP), along with the mineral admixtures like Fly ash (F) and Silica Fume (SF). Experimental investigation on the durability properties for all the 20 mixes of SCC was carried out by conducting the Rapid Chloride Penetration Test (RCPT), Saturated Water Absorption Test, Acid Resistance Test, Sulphate Resistance Test, Water Permeability Test and Salt Water Resistance Test. From the experimental study, it is observed that the SCC mix with equal proportions F (10%), SF (10%), LP (10%) and MP (10%), exhibit better performance than the control mix in terms of strength and durability characteristics and thus it is concluded that the addition of mineral admixtures and filler materials have a pivotal role in the development of strength and durability aspects of SCC.


2021 ◽  
Vol 5 (1) ◽  
pp. 22
Author(s):  
S. Sigit Udjiana ◽  
Sigit Hadiantoro ◽  
Noor Isnaini Azkiya

Pada penelitian ini biji durian digunakan sebagai sumber pati dalam pembuatan plastik biodegradable. Penelitian ini bertujuan untuk mengetahui pengaruh jenis dan jumlah filler terhadap sifat biodegradable, sifat mekanik dan sifat water absorbtion pada plastik biodegradable berbasis pati biji buah durian. Plasticizer yang digunakan dalam penelitian ini adalah sorbitol  40%, sedangkan filler yang digunakan adalah Kalsium silikat (Ca2SiO4) dan Kalsium karbonat (CaCO3) dengan variable konsentrasi 2%, 4%, 6%, dan 8%. Dari hasil penelitian, diperoleh % yield dari pati biji buah durian sebesar 34,57%. Hasil dari plastik biodegradable terbaik dengan karakteristik transparan, tidak ada gelembung, lentur serta permukaan yang halus diperoleh pada variabel penambahan filler kalsium karbonat 4%. Hasil uji bio-degradasi paling mendekati standard ASTM D6400 diperoleh pada variabel kalsium karbonat 2%. Pada Uji water absorption hasil terbaik dicapai pada variabel kalsium silikat 8%. Uji tarik hasil terbaik diperoleh pada variabel kalsium silikat 6%.In this study, durian seeds were used as a source of starch in making biodegradable plastics. This study aims to determine the effect of the type and amount of filler on biodegradable properties, mechanical properties, and water absorption properties of biodegradable plastics based on durian fruit starch. The plasticizer used in this study was sorbitol 40%, while the filler used was Calcium silicate (Ca2SiO4) and Calcium carbonate (CaCO3) with variable concentrations of 2%, 4%, 6%, and 8%.. From the research results, the% yield of durian seed starch was 34.57%. The results of the best biodegradable plastic with the characteristics of transparent, no bubbles, flexible and smooth surface were obtained with the addition of 4% calcium carbonate filler variables. The bio-degradation test results closest to the ASTM D6400 standard were obtained in the 2% calcium carbonate variable. In the water absorption test, the best results were achieved at the 8% calcium silicate variable. The best tensile test results were obtained in the 6% calcium silicate variable.


2013 ◽  
Vol 857 ◽  
pp. 10-19
Author(s):  
Ji Liang Wang ◽  
Xiang Qian Wen ◽  
Jun Hong Shan ◽  
Ying Liu

the influence of mixing amount of mineral admixture, volume content of fine and coarse aggregate have been systematical studied on the workability, mechanical properties and volume stability of self-compacting concrete. Test results showed that with the fly ash content increased, the workability of self-compacting concrete improved significantly, early compressive strength decreased, but increase rate of later strength improved remarkably, and the mixing amount of fly ash inhibited significantly the dry shrinkage of self-compacting concrete; with the volume content of coarse aggregate increased, the workability of self-compacting concrete decreased significantly, but the volume stability of self-compacting concrete improved obviously, thus the optimum volume content of coarse aggregate of self-compacting concrete was range from 0.30 to 0.34; when the volume content of fine aggregate varied at the range of 0.40~0.50, there may be little effects on the workability of self-compacting concrete, but the increase self-compacting concretes volume content could reduce obviously the dry shrinkage of self-compacting concrete. Moreover, the variation in the volume content of coarse and fine aggregate should have slight influence on the early strength of self-compacting concrete, and the influence of the volume content variety on the later strength of self-compacting concrete could be neglected eventually.


Author(s):  
S.E Ubi ◽  
P.O Nkra ◽  
R.B Agbor ◽  
D.E Ewa ◽  
M. Nuchal

This present research was on the comparison of the efficacious use of basalt and granite as coarse aggregates in concrete work. In order to obtain the basis for comparison, physical and structural tests were conducted on the different materials of the concrete and the concrete samples respectively. Physical test results revealed that basalt have a specific gravity of 2.8 and 2.5, while granite have a specific gravity of 2.9 and 2.6. In density, basalt have a density of 1554.55kg/m3 while granite had a density of 1463.64kg/m3. Aggregate impact test conducted on both aggregates revealed a percentage of 11.05% for basalt and 12.63% for granite. The following structural tests were carried out: compressive strength tests, flexural and tensile strength test and the comparative results are as follows. Compressive strength for basalt 36.39N/mm2 while 37.16N/mm2 for granite. 24.81N/mm2 tensile strength for basalt while 12.57N/mm2 for granite, 31.83N/mm2 flexural strength for basalt while 27.97N/mm2 for granite. From the above results, it can be deduced that basalt has higher strength properties than granite. Therefore, more suitable for coarse aggregate in achieving higher strength with some quantity of other composition of the concrete mix when compared to granite.


Author(s):  
Anthony Nkem Ede ◽  
Obatarhie Oshogbunu ◽  
Oluwarotimi Michael Olofinnade ◽  
Kayode Joshua Jolayemi ◽  
Solomon Olakunle Oyebisi ◽  
...  

Self-compacting concrete (SCC) flows through densely steel reinforced elements and consolidates under self-weight without need for vibration or compaction. This helps in complex and densely reinforced structures. The integration of fibers and fillers in concrete improves its general properties. The addition of fibers in particular can regulate the flow and workability of the concrete; hence, the high workable nature of SCC can be an ideal mix for the incorporation of fibers. This research investigates the effect of bamboo fibers and limestone powder on the fresh properties of self-compacting concrete. Bamboo fibers of an aspect ratio of 50 and varied volumes of 0.25%, 0.5%, 0.75% and 1% were adopted for this research. The workability of the mix was assessed by slump flow test and V-funnel test. For fiber volumes of 0.25%, 0.5%, 0.75%, it was observed that the coarse aggregate was evenly distributed across the spread, indicating good viscosity and stability of the mix. The presence of 10% percent limestone powder improved the workability of the concrete mix. This can be attributed to filler properties of limestone powder, which, affecting the cement particle system, changed the ordinary distance between them and modified the water quantity available for the hydration process. These results proved that the bamboo fiber and limestone powder can be sustainably adopted to regulate the flow-ability of SCC without compromising desired properties.


2012 ◽  
Vol 602-604 ◽  
pp. 938-942 ◽  
Author(s):  
Wai Ching Tang

In this paper, the fresh properties of self-compacting concrete (SCC) using recycled coarse aggregate (RCA) were evaluated. Five types of SCC mixtures were made, where the percentage of substitution of natural coarse aggregate by RCA was 0, 25, 50, 75 and 100%. The cement content, water to binder (W/B) ratio and Superplasticizer dosage were kept the same for all mixes. The effects of RCA on the key fresh properties such as filling ability, passing ability, and segregation resistance of SCC were investigated by conducting several fresh concrete tests included slump-flow, L-box, and sieve stability tests. The overall test results suggest that RCA can be used to produce SCC substituting up to 100% natural coarse aggregates without affecting the key fresh properties of concrete.


2014 ◽  
Vol 61 (1) ◽  
pp. 43-58 ◽  
Author(s):  
Alaa M. Rashad ◽  
Hosam.El Din H. Seleem

Abstract This paper presents the results of an investigation to assess the validity of producing high strength concrete (HSC) using moderate cement content to reduce the consumption of the binders. Cement content is lowered from 500 kg/m3 to 400 kg/m3. The difference in cement content is compensated by the addition of fine limestone (LS) powder. Pozzolans were incorporated as an addition to cement. Different coarse aggregate types were employed. Workability, compressive strength, tensile strength, permeability and drying shrinkage were measured. Test results revealed that HSC with a compressive strength up to 79 MPa (at 90 days age) could be produced with moderate cement content. The mixtures consistency and drying shrinkage are greatly enhanced due to employing LS powder and the permeability is satisfactory. To provide better solution to some concrete disadvantages like cracking and drying shrinkage, using an economic rate for cement are believed to reduce these disadvantages.


Author(s):  
M.T Akinleye ◽  
Q.A Uthman ◽  
A.A Abdulwahab

This study investigated the strength properties of Rice Husk Ash (RHA) concrete with shredded Polyethylene Terephthalate (PET) bottles as coarse aggregate partial replacement. Concrete mix, 1:2:4 was designed for all specimens with w/c of 0.5. Samples were prepared and examined at deferent replacement levels of cement with RHA (5, 10 and 15%) using shredded PET bottles (5, 10 and 15%) as coarse aggregate replacement. Concrete without RHA and shredded PET bottles served as control. A total number of 90 concrete cubes and 20 flexural beams were used to examine the strength properties of produced concrete specimens at 28 days. Results revealed that both compressive and flexural strengths of RHA-concrete decreased as the amount of shredded PET bottles increased. The compressive strengths obtained were 20.65, 17.44, 16.53 and 15.87 N/mm2 while the flexural strengths were 10.49, 6.63, 6.59 and 5.72 N/mm2 for 0, 5, 10 and 15% replacement levels respectively. This class of concrete could be used to produce both plain and reinforced concrete of light weight aggregate.


Sign in / Sign up

Export Citation Format

Share Document