scholarly journals Obesity and Non-Alcoholic Fatty Liver Disease: Pathophysiology and Management Focused

2021 ◽  
Vol 3 (1) ◽  
pp. 6-12
Author(s):  
. Febyan ◽  
Norman Delvano Weky

The continuing rise of obesity epidemic in the global population has been markedly associated with the escalating occurrence and severity of non-alcoholic fatty liver disease (NAFLD). This condition represents a complex metabolic imbalance, primarily characterized by excessive intrahepatic accumulation of triglycerides, known as hepatic steatosis. This pathophysiological process is initiated by the disproportionation between the uptake of dietary fatty acids in plasma, as well as the increase of de novo fatty acid synthesis, which is not equally accompanied by the exportation and oxidation of fatty acid in the form of triglycerides. As mentioned earlier, the underlying metabolic process becomes a significant risk factor for developing cardiometabolic complications, involving type 2 diabetes mellitus, insulin resistance, and dyslipidemia. This review presents a comprehensive understanding of the pathogenesis and pathophysiology of obesity and NAFLD to determine innovative management approaches for the prevention and treatment of the disease.

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1822
Author(s):  
Christian von Loeffelholz ◽  
Sina M. Coldewey ◽  
Andreas L. Birkenfeld

5′AMP-activated protein kinase (AMPK) is known as metabolic sensor in mammalian cells that becomes activated by an increasing adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio. The heterotrimeric AMPK protein comprises three subunits, each of which has multiple phosphorylation sites, playing an important role in the regulation of essential molecular pathways. By phosphorylation of downstream proteins and modulation of gene transcription AMPK functions as a master switch of energy homeostasis in tissues with high metabolic turnover, such as the liver, skeletal muscle, and adipose tissue. Regulation of AMPK under conditions of chronic caloric oversupply emerged as substantial research target to get deeper insight into the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Evidence supporting the role of AMPK in NAFLD is mainly derived from preclinical cell culture and animal studies. Dysbalanced de novo lipogenesis has been identified as one of the key processes in NAFLD pathogenesis. Thus, the scope of this review is to provide an integrative overview of evidence, in particular from clinical studies and human samples, on the role of AMPK in the regulation of primarily de novo lipogenesis in human NAFLD.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2536 ◽  
Author(s):  
Jeongeun Mun ◽  
Shintae Kim ◽  
Ho-Geun Yoon ◽  
Yanghee You ◽  
Ok-Kyung Kim ◽  
...  

Our aim was to investigate whether hot water extract (CLW) of Curcuma longa L. could prevent non-alcoholic fatty liver disease (NAFLD). HepG2 cells were treated with free fatty acid (FFA) mixture (oleic acid: palmitic acid, 2:1) for 24 h to stimulate in vitro fatty liver. In addition, C57BL/6 mice were fed 60 kcal% high-fat (HF) diet for eight weeks to induce fatty liver in vivo. Intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) productions were increased by FFA and HF-diet, but supplementation with CLW significantly decreased these levels. CLW treatment ameliorated antioxidant activities that were suppressed by exposure to the FFA and HF-diet. Cluster of differentiation 36 (CD36) and fatty acid transport proteins (FATP2 and FATP5) were increased in HF-diet groups, while CLW suppressed their expression levels. Moreover, sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-coenzyme A carboxylase (ACC), and fatty acid synthase (FAS) expression levels were down-regulated in the CLW groups compared to HF-diet groups. On the other hand, 5′ adenosine monophosphate-activated protein kinase (AMPK), Peroxisome proliferator-activated receptor alpha (PPAR-α), and carnitine palmitoyltransferase 1 (CPT-1) expressions were up-regulated in the CLW groups. HF-diet fed mice showed high hepatic triglycerides (TG) content compared to the normal diet mice. However, the administration of CLW restored the hepatic TG level, indicating an inhibitory effect against lipid accumulation by CLW. These results suggest that CLW could be a potentially useful agent for the prevention of NAFLD through modulating fatty acid uptake.


2019 ◽  
Vol 20 (9) ◽  
pp. 2325 ◽  
Author(s):  
Hua Li ◽  
Wonbeak Yoo ◽  
Hye-Mi Park ◽  
Soo-Youn Lim ◽  
Dong-Ha Shin ◽  
...  

Arazyme, a metalloprotease from the spider Nephila clavata, exerts hepatoprotective activity in CCL4-induced acute hepatic injury. This study investigated the hepatoprotective effects in high-fat diet (HFD)-induced non-alcoholic fatty liver disease-like C57BL/6J mice. The mice were randomly divided into four groups (n = 10/group): the normal diet group, the HFD group, the arazyme group (HFD with 0.025% arazyme), and the milk thistle (MT) group (HFD with 0.1% MT). Dietary supplementation of arazyme for 13 weeks significantly lowered plasma triglyceride (TG) and non-esterified fatty acid levels. Suppression of HFD-induced hepatic steatosis in the arazyme group was caused by the reduced hepatic TG and total cholesterol (TC) contents. Arazyme supplementation decreased hepatic lipogenesis-related gene expression, sterol regulatory element-binding transcription protein 1 (Srebf1), fatty acid synthase (Fas), acetyl-CoA carboxylase 1 (Acc1), stearoyl-CoA desaturase-1 (Scd1), Scd2, glycerol-3-phosphate acyltransferase (Gpam), diacylglycerol O-acyltransferase 1 (Dgat1), and Dgat2. Arazyme directly reduced palmitic acid (PA)-induced TG accumulation in HepG2 cells. Arazyme suppressed macrophage infiltration and tumor necrosis factor α (Tnfa), interleukin-1β (Il1b), and chemokine-ligand-2 (Ccl2) expression in the liver, and inhibited secretion of TNFα and expression of inflammatory mediators, Tnfa, Il1b, Ccl2, Ccl3, Ccl4, and Ccl5, in PA-induced RAW264.7 cells. Arazyme effectively protected hepatic steatosis and steatohepatitis by inhibiting SREBP-1-mediated lipid accumulation and macrophage-mediated inflammation.


2019 ◽  
Vol 70 (1) ◽  
pp. e9
Author(s):  
Francisco Gonzalez-Romero ◽  
Daniela Mestre ◽  
Igor Aurrekoetxea ◽  
Diego Sáenz de Urturi ◽  
Beatriz Gomez-Santos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document