scholarly journals Tectono-magmatogenering structures in zones of increased geodynamic instability as priority objects for exploration of hydrogen fields

2021 ◽  
Vol 43 (4) ◽  
pp. 3-41
Author(s):  
A.E. Lukin ◽  
V.M. Shestopalov

Based on comparison of the migration activity of hydrocarbons, helium and hydrogen, the paper substantiates the types of cap rocks for hydrogen accumulations (pools), which most of all contributes to its partial shieldingat steady feed. Such cap rocks are represented by predominantly smectite clay, pure (without inclusions) salt at depths over 1—2 km, non-fractured quartz sandstone at depths over 4 km, effusive and hypabissal intrusive rocks, as well as basement rocks undisturbed by metamorphic decomposition processes. Endogenous hydrogen isconsidered as the main factor of dissipative structures formation. Occurrence of hydrogen, hydrocarbon and ore macro accumulations is a kind of energy, information-geochemical fluctuations, which are intermediate states of dissipative structures subordinated to the planetary heat and mass transfer processes caused by the deep Earth degassing. In this context, the nature of geodynamic instability (activation of vertical movements, shifts, tensile and compressive stresses) can be considered as a growing sequence of dissipative processes associated with the energy percolation role of endogenous hydrogen. In the hierarchy of ring structures (RS) (from minor depressions to large structures of dozens kilometres in diameter) special attention should be paid to Sribne RS within the Dnieper-Donets Basin and Kaluga RS within the SW part of the Voronezh anteclisepericline. These ring structuresare genetically related to explosion or volcanic calderas, and characterized by ancient origin (Proterozoic) and long-term development, including neo- and actuotectonic stages. Intensity of hydrogen degassing in the Sribne RSis confirmed by micro- and nano-inclusions in the black-shale domanicoid rocks of the productive horizons in the form of particles of native metals(including oxyphile elements Al, Zn, W and others), natural alloys and intermetallids, which are tracers of ascending flows of deep reduced fluids. It is reasonable to assume the occurrence of a large hydrogen or helium-hydrogen field (group of fields) within the Sribne RS in the Lower Visean, Lower Bashkirian and Lower Permian aged rocks, which are shielded by the Lower Permian salt deposits.

2021 ◽  
Author(s):  
Valentyn Loktyev ◽  
Sanzhar Zharkeshov ◽  
Oleg Gotsynets ◽  
Oleksandr Davydenko ◽  
Mikhailo Machuzhak ◽  
...  

Abstract The paper considers the problematics of identifying proper analogues for understanding carbonate and clastic reservoir distribution and prediction in the Lower Permian and Upper and Lower Carboniferous within the Dnieper-Donets basin. The focus of the exploration team was finding meandering rivers. This choice was proven good in mapping reservoirs and finding traps deeper in the Upper and Middle Carboniferous, although for Permian clastic section the approach was not helpful. The second option was desert dunes, but poor sorting of reservoirs suggests a more complex picture. Analogues such as desert environment is quite logical for describing Lower Permian as aridic climate, with red and brown shales and sands. Lower Permian reservoirs have a moon-like shape in the vertical sections that could be easily mistaken for river channels, but in such a dry climate, it is very likely water flow channels with sporadic hurricane-related activities. Core and logs shows chaotic grain sizes, but more with fine grains with almost no coarse grains. The source of sedimentary material could be mountains of Ukrainian Rock Shield from the South and Voronezh massif from the North. This conceptual model is proposing not to look for meandering channels, but more for braided channels with poorly sorted material. The current time analogue could be the Oman desert between the mountains and peninsula. From satellite images, braided channels are clearly visible in the direction towards the Indian Ocean. The channels’ internal structure is quite heterogeneous. This method suggests exploration targets with possible widths of the channels as big as hundreds of meters and their lengths under 10 and between 10-20 kilometres maximum.


Author(s):  
S. Vyzhva ◽  
V. Onyshchuk ◽  
I. Onyshchuk ◽  
M. Reva ◽  
O. Shabatura

The main objective of this article is to study electrical parameters of Lower Permian carbonate rocks of Western part of the Hlynsko-Solokhivskyi gas-oil-bearing district of the Dnieper-Donets Basin (DDB) in normal (atmospheric) and modeling (reservoir) conditions. In atmospheric conditions it has been revealed that the resistivity of dry extracted limestones (the specific electrical resistivity of framework of grains was measured) varies from 12.147 kΩ⋅m to 111.953 MΩ⋅m (mean 1.542 MΩ⋅m). The resistivity of saturated limestone samples with kerosene varies from 44.478 kΩ⋅m to 14.449 MΩ⋅m (mean 1.435 MΩ⋅m). The resistivity of dry and saturated with kerosene samples is almost the same. The resistivity of limestones saturated with model of reservoir water (salinity M = 190 g/l) is lower and varies from 1.11 Ω⋅m to 23.16 Ω⋅m (mean 3.12 Ω⋅m). It has been determined that formation resistivity factor of limestones in atmospheric conditions varies from 13.5 to 230 Ω⋅m (mean 32.5 Ω⋅m). In addition to resistivity, the parameter of relative permittivity of investigated limestones was studied. It was determined that relative permittivity of dry limestones varies from 3.0 to 7.5 (mean 4.2). Relative permittivity saturated samples of limestones with kerosene varies from 2.8 to 8.8 (mean 4.5) and practically does not differ from dry ones but significantly lower than values of samples saturated with model of reservoir water (from 655 to 9565, mean 4280). That means when pores of limestones are saturated with NaCl solution their relative permittivity increases rapidly – from hundreds to thousands times (on average 944 times). It can be explained by the high conductivity of model of reservoir water. Limestones saturated with NaCl solution have velocities of P-waves in the range from 3346 m/s to 4388 m/s (mean 4030 m/s), and velocities of Swaves – from 1753 m/s to 2121 m/s (average 1942 m/s). If rocks are saturated with kerosene then velocities have strictly higher values – P-waves from 3433 m/s to 4514 m/s (mean 4011 m/s) and S-waves – from 2137 m/s to 2464 m/s (average 2344 m/s). Physical modelling of reservoir conditions (temperature 50 °С, pressure 30 MPa) showed that the specific electrical resistivity varies from 0.81 Ω⋅m to 13.19 Ω⋅m (mean 2.67 Ω⋅m), and limestones – from 0.49 Ω⋅m to 7.81 Ω⋅m (mean 1.95 Ω⋅m). Also, "specific electrical resistivity – pressure" connection was investigated. Due to the closure of microcracks and the deformation of the pore space, the electrical resistance of rocks increases with increase of pressure. The regression dependence of the formation resistivity enlargement factor with pressure for the studied rocks has a linear character. It was determined that in reservoir conditions the range of the formation resistivity factor for limestones varied from 17.3 to 271.9 Ω⋅m (mean 50.7 Ω⋅m), and range of variation of porosity coefficient was from 0.040 to 0.169 Ω⋅m (mean 0.118 Ω⋅m). The comprehensive analysis of petrophysical data has been resulted in a set of correlation ratios between reservoir, electric and elastic parameters of studied limestones in normal and modeling conditions.


2021 ◽  
Author(s):  
Christopher James Banks ◽  
Bohdan Bodnaruk ◽  
Vladislav Kalmutskyi ◽  
Yerlan Seilov ◽  
Murat Zhiyenkulov ◽  
...  

Abstract Context is everything. Not all thick sands pay out and not all thin sands are poorly productive. It is important to understand a basin's palaeogeographical drivers, the resultant palaeoenvironments and their constituent sedimentary architecture. Development of a depositional model can be predictive with respect to the magnitude of accessible pore space for potential development. We present a multi-field study of the Dneipr-Donets basin. Over 600 wells were studied with >4500 lithostratigraphical picks being made. Over 7500 sedimentological picks were made allowing mapping of facies bodies and charting shifts in facies types. A facies classification scheme was developed and applied. The Devonian-Permian sedimentary section records the creation, fill, and terminal closure of the Dneipr-Donets Basin:Syn-rift brittle extension (late Frasnian-Famennian): intracratonic rifting between the Ukrainian Shield and Voronezh Massif formed a NW-SE orientated trough, with associated basaltic extrusion. Basin architecture consists of rotated fault blocks forming graben mini-basins. Sedimentation is dominantly upper shoreface but sand packages are poorly correlatable due to the faulted palaeotopography.Early Post-rift thermal subsidence (Visean-Lower Bashkirian): the faulted palaeotopography was filled and thermal subsidence drove basin deepening. Cyclical successions of offshore, lower shoreface and upper shoreface dominate. Sands are typically thin (<10m) but can be widely correlated and have high pore space connectivity.Mid Post-rift: the Bashkirian (C22/C23 boundary), paralic systems prograde over the shoreface. Changes in vertical facies are abrupt due to a low gradient to basin floor. Deltaic and fluvial facies can produce thick amalgamated sands (>30m), but access limited pore space because they are laterally restricted bodies.Terminal post-rift (Mykytivskan): above the lower Permian, the convergence of the Kazahkstanian and Siberian continents began to restrict the Dnieper-Donets basin's access to open ocean. The basin approached full conditions and deposition was dominated by evaporite precipitation, with periodic oceanic recharge. Ultimately, this sediment records the formation of Pangea. The successions examined were used to construct a basinal relative sea level curve, which can be applied elsewhere in the basin. This can be used to help provide palaeogeographical context to a field, which in turn controls the sedimentary architecture.


2020 ◽  
Author(s):  
Remi J.G. Charton

Our understanding of the Earth’s interior is limited by the access we have of its deep layers, while the knowledge we have of Earth’s evolution is restricted to harvested information from the present state of our planet. We therefore use proxies, physical and numerical models, and observations made on and from the surface of the Earth. The landscape results from a combination of processes operating at the surface and in the subsurface. Thus, if one knows how to read the landscape, one may unfold its geological evolution.In the past decade, numerous studies have documented km-scale upward and downward vertical movements in the continental rifted margins of the Atlantic Ocean and in their hinterlands. These movements, described as exhumation (upward) and subsidence (downward), have been labelled as “unpredicted” and/or “unexpected”. ‘Unpredicted’ because conceptual, physical, and numerical models that we dispose of for the evolution of continental margins do not generally account for these relatively recent observations. ‘Unexpected’ because the km-scale vertical movements occurred when our record of the geological history is insufficient to support them. As yet, the mechanisms responsible for the km-scale vertical movements remain enigmatic.One of the common techniques used by geoscientists to investigate the past kinematics of the continental crust is to couple ‘low-temperature thermochronology’ and ‘time-temperature modelling’. In Morocco alone, over twenty studies were conducted following this approach. The reason behind this abundance of studies and the related enthusiasm of researchers towards Moroccan geology is due to its puzzling landscapes and complex history. In this Thesis, we investigate unconstrained aspects of the km-scale vertical movements that occurred in Morocco and its surroundings (Canary Islands, Algeria, Mali, and Mauritania). The transition area between generally subsiding domains and mostly exhuming domains, yet poorly understood, is discussed via the evolution of a profile, running across the rifted continental margin (chapter 2). Low-temperature thermochronology data from the central Morocco coastal area document a km-scale exhumation between the Permian and the Early/Middle Jurassic. The related erosion fed sediments to the subsiding Mesozoic basin to the northwest. Basement rocks along the transect were subsequently buried between the Late Jurassic and the Early Cretaceous. From late Early/Late Cretaceous onwards, rocks present along the transect were exhumed to their present-day position.The post-Variscan thermal and geological history of the Anti-Atlas belt in central Morocco is constrained with a transect constructed along strike of the belt (chapter 3). The initial episode occurred in the Late Triassic and led to a km-scale exhumation of crustal rocks by the end of the Middle Jurassic. The following phase was characterised by basement subsidence and occurred during the Late Jurassic and most of the Early Cretaceous. The basement rocks were then slowly brought to the surface after experiencing a km-scale exhumation throughout the Late Cretaceous and the Cenozoic. The exhumation episodes extended into the interior of the African tectonic plate, perhaps beyond the sampled belt itself. Exhumation rates and fluxes of material eroded from the hinterlands of the Moroccan rifted margin were quantified from the Permian (chapter 4). The high denudation rates, obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene, are comparable to values typical of rift flank, domal, or structural uplifts. These are obtained in central Morocco during the Early to Middle Jurassic and in northern Morocco during the Neogene. Exhumation rates for other periods in northern to southern Morocco average around ‘normal’ denudation values. Periods of high production of sediments in the investigated source areas are the Permian, the Jurassic, the Early Cretaceous, and the NeogeneThe Phanerozoic evolution of source-to-sink systems in Morocco and surroundings is illustrated in several maps (chapter 5). Substantial shifts in the source areas were evidenced between the central and northern Moroccan domains during the Middle-Late Jurassic and between the Meseta and the Anti-Atlas during the Early-Late Cretaceous. Finally, the mechanisms responsible for the onset and subsistence of the unpredicted km-scale vertical movements are discussed (chapter 6). We propose that a combination of the large-scale crustal folding, mantle-driven dynamic topography, and thermal subsidence, superimposed to changes in climates, sea level and erodibility of the exposed rocks, were crucial to the timing, amplitude, and style of the observed vertical movements.The km-scale vertical movements will continue to be studied for years to come. Expectantly, this Thesis will deliver sufficiently robust grounds for further elaborated and integrated studies in Morocco and beyond.


2021 ◽  
Author(s):  
Vitaliy Privalov ◽  
Valentyn Loktyev ◽  
David Misch ◽  
Reinhard Sachsenhofer ◽  
Ivan Karpenko ◽  
...  

Abstract Since 1950, when the megascale Shebelinka deposit was found in the north-eastern portion of the Dnieper-Donets basin (DDB) this district has been served as a heartland of the hydrocarbon extraction in Ukraine. Right now, this area is again facing a new wave of commercial interest. Most conventional hydrocarbon plays here contain natural gas and liquid gas accumulated in numerous clastic and fractured horizons throughout Carboniferous to Lower Permian successions. The numerical basin modelling in the Donbas segment indicated that organic-rich sediments are thermally mature in the deep levels of the basin. Our interpretation of the structural patterns within the study area suggests that the kinematic development of the fracture sets is consistent with the model of development of subsidiary structures within the dextral strike-slip zone. Nearly all gas and gas condensate fields in the eastern part of the DDB may be classified as naturally fractured reservoirs in fault-breached anticlinal traps associated with releasing jogs in strike-slip assemblages. Gaseous hydrocarbons generated in deep "gas window" compartments have escaped here via several fracture corridors forming "sweet spots " sites. The main objective of this contribution is to get an insight into the style and structural trends of formation structural traps of hydrocarbons which in concert with basin modeling technologies will ensure proper technical decisions for the efficient exploration and production of gas reservoirs. This research summarizes new insights into gas deposits formation in the eastern part of DDB based on a synthetic approach ascertaining a vital connection of basin modeling results with the spatial distribution of kinematically induced releasing jogs which facilitating magnified fluid-and-gas conductivity.


2021 ◽  
Author(s):  
Ivan Khabanets ◽  
Benjamin Medvedev ◽  
Carlo D'Aguanno ◽  
Diego Scapin ◽  
Marco Mantova

Abstract The Dnieper-Donets Basin (DDB) is the principal producer of hydrocarbons in Ukraine and reserves are found in lower Permian and in Visean-Serpukhovian from Lower Carboniferous. The Vodianivske field is located halfway between Poltava and Kharkiv in east Ukraine with proven reserves at depth of 5-6km. Previous studies based on legacy seismic data show thickness changes of the upper Visean towards the main structure and dim small-scale structures on the block boundary. A recent 3D data reprocessing using 5D interpolation and advanced prestack time migration provides a broad frequency content image and imparts detailed high-resolution geological events. While traditional exploration is focused on gas traps in the Visean and below, current study aims to scan for potential traps in the Serpukhovian and above. In order to reveal thin section features, multiple seismic attributes were tested, and spectral decomposition was found to be a powerful tool that delineated thin sand bodies in river valleys and allowed interpretation of high-resolution small-scale faults and pinch-outs not seen before. Frequency tuning analysis on mapped horizons associated with upper Serpukhovian supported the presence of a large deltaic structure revealing SE-NW thin ∼1km wide sand body and developed set of crossing meanders. Similar approach was applied on legacy data expanding to the east and while seismic quality was limited, it was possible to identify a narrow ∼25km length meander and highlight a fault set. Upon seismic attribute study we were able to identify and map thin units associated with sands that can be considered as future targets in hydrocarbon exploration in the area.


2021 ◽  
Vol 43 (3) ◽  
pp. 85-90
Author(s):  
L.V. Shumlyanskyy ◽  
M. Hofmann ◽  
B.V. Borodynya ◽  
G.V. Artemenko

Results of U-Pb dating of zircons from the Middle Devonian sandstones of the Mykolaivka Suite, taken from the junction zone between the Azov Domain of the Ukrainian Shield and Donets basin, are reported. The rocks are taken from a drill core and they occur beneath a 210 m sequence of mafic and ultramafic volcanic rocks that belong to the Antonivka (D2-3) and Mykolaivka (D2) suites. In total, 28 U-Pb isotope analyses were performed. The predominant population (18 grains) of zircons yielded a concordant age of 2075±9 Ma (MSWD = 0.64). The second largest population consists of zircon crystals with concordant to nearly concordant ages ranging from 3130 to 2830 Ma. These results indicate a local origin for the detrital zircons. The occurrence of coarse-grained terrigenous sediments, derived from local rock sources, indicates significant erosion of the Precambrian basement that might have been caused by differential vertical movements during the Middle Devonian period. In the Donets basin, rifting and uplift started ca. 10 Myr before that of other parts of the Prypyat-Dnieper-Donets Paleorift.


Author(s):  
Eugeny S. Przhiyalgovskii ◽  
◽  
Yuriy A. Morozov ◽  
Mikhail G. Leonov ◽  
Anatoliy K. Rybin ◽  
...  

The article presents data on the structure of transition zones from areas of relative downwarping (intramountain depressions) to anticlinor uplifts dividing them. The geological and geophysical data obtained by the authors in recent years in different areas of the Northern Tien Shan are considering and discussing to compare the structure and tectonic evolution of key objects. A comparative analysis of the depression / uplift tectonic zones in different regions indicates a fundamental similarity in their structure. These areas of gradient vertical movements are zones of concentrated deformation. We described ensembles of structures formed at the same time in the sedimentary cover and in the basement rocks. Similar structural features are due to the common tectonic evolution of basins and ridges as parts of a unified activation structure of the Paleozoic folded belt. Over a long period of time, from the Oligocene to the Pliocene inclusive, the depressions of the Northern Tien Shan had developed under conditions of sedimentary subsidence, probably by the type of pool-apart structures in a latitudinally oriented region of plastic shear deformation. The relatively quiet tectonic setting of this stage is reflected in the lithological features of the sedimentary complexes. The next stage, which began about 3 Ma b.p., was marked not only by the emergence of a high-altitude relief and the accumulation of molasses, but also by a change of tectonic regime to transpression. The generally flexible bending of the foundation surface in the steep sides of the depressions, to some extent complicated by uplifts, was accompanied by the formation of extensive detachments and thrust-folded structural ensembles in the sedimentary cover of the depressions. Contrary to popular point of view volumes of disintegrated basement rocks demonstrate significant plasticity. The lateral pressure of the side ledges inside the sedimentary cover was transmitted for many kilometers towards the depression’s center. At the same time, contrary to traditional ideas, the volumes of disintegrated rocks of the basement demonstrate significant plasticity, while the lateral pressure of the side ledges was transmitted for many kilometers into the depressions inside the sedimentary cover.


Sign in / Sign up

Export Citation Format

Share Document