scholarly journals Tectonic structure and development of the “depression/ uplift” transition zones, Northern Tien Shan

Author(s):  
Eugeny S. Przhiyalgovskii ◽  
◽  
Yuriy A. Morozov ◽  
Mikhail G. Leonov ◽  
Anatoliy K. Rybin ◽  
...  

The article presents data on the structure of transition zones from areas of relative downwarping (intramountain depressions) to anticlinor uplifts dividing them. The geological and geophysical data obtained by the authors in recent years in different areas of the Northern Tien Shan are considering and discussing to compare the structure and tectonic evolution of key objects. A comparative analysis of the depression / uplift tectonic zones in different regions indicates a fundamental similarity in their structure. These areas of gradient vertical movements are zones of concentrated deformation. We described ensembles of structures formed at the same time in the sedimentary cover and in the basement rocks. Similar structural features are due to the common tectonic evolution of basins and ridges as parts of a unified activation structure of the Paleozoic folded belt. Over a long period of time, from the Oligocene to the Pliocene inclusive, the depressions of the Northern Tien Shan had developed under conditions of sedimentary subsidence, probably by the type of pool-apart structures in a latitudinally oriented region of plastic shear deformation. The relatively quiet tectonic setting of this stage is reflected in the lithological features of the sedimentary complexes. The next stage, which began about 3 Ma b.p., was marked not only by the emergence of a high-altitude relief and the accumulation of molasses, but also by a change of tectonic regime to transpression. The generally flexible bending of the foundation surface in the steep sides of the depressions, to some extent complicated by uplifts, was accompanied by the formation of extensive detachments and thrust-folded structural ensembles in the sedimentary cover of the depressions. Contrary to popular point of view volumes of disintegrated basement rocks demonstrate significant plasticity. The lateral pressure of the side ledges inside the sedimentary cover was transmitted for many kilometers towards the depression’s center. At the same time, contrary to traditional ideas, the volumes of disintegrated rocks of the basement demonstrate significant plasticity, while the lateral pressure of the side ledges was transmitted for many kilometers into the depressions inside the sedimentary cover.


2012 ◽  
Vol 20 (4) ◽  
pp. 317-345 ◽  
Author(s):  
K. E. Degtyarev ◽  
T. Yu. Tolmacheva ◽  
A. V. Ryazantsev ◽  
A. A. Tret’yakov ◽  
A. S. Yakubchuk ◽  
...  


Author(s):  
Olga Sivalneva ◽  
Alexandr Postnikov ◽  
Vladimir Kutcherov ◽  
Marianna Tuchkova ◽  
Alexandr Buzilov ◽  
...  

Results of geological and geophysical investigations of the Siljan Ring impact structure (central Sweden) revealed complicated relationships between Paleozoic sedimentary succession and the Precambrian basement. Tectonic and depositional evolution caused complex geology. Studies of a new drill core from the C-C-1 well provide information necessary for the reconstruction of the geological setting in the southwestern part of Siljan Ring. The whole interval of the core section is from 32.60 to 634.90 m with almost no breaks. The sedimentary cover is 373.55 m thick in total. The sedimentary sequences are predominantly composed of wackestones, mudstones, and shales. In the lower part of the sedimentary section, limestone layers intercalate with black shales. In a result of the investigations, it has been suggested that sedimentary layers represent Late Ordovician and Silurian deposits and have disturbed stratigraphic relations. The basement section is composed of Precambrian meta-volcanic and meta-sedimentary rocks. The contact between the basement and the sedimentary cover is tectonic, not normal sedimentary, in origin. Tectonic processes caused intensive rock fracturing. Four generations of fractures were identified with analysis of fracture relations and mineralization sequence. Only two of them occur in sedimentary rocks that probably belong to the latest stages of tectonic activity. Highly fractured basement rocks in some cases contain open vugs developed along the fractures. Rock matrix is tight either in sedimentary and basement rocks and only micro-porosity space is recognized in cataclastic zones. Single evidence of bituminous filling of micro-porosity zone and partly cemented vug is established in limestone from the lower part of the sedimentary section. These findings are particularly valuable for stratigraphy refinement and tectonic setting reconstructions as well as oil and gas reservoir forecasts.



2021 ◽  
Vol 929 (1) ◽  
pp. 012007
Author(s):  
E S Przhiyalgovskii ◽  
A K Rybin ◽  
Yu A Morozov ◽  
E V Lavrushina ◽  
M G Leonov ◽  
...  

Abstract The article presents the results of complex geological and geophysical studies in the Naryn depression and Atbashi depression in the Middle Tien Shan. They included the geological interpretation of new magnetotelluric data along the detailed profile crossing the key segment of the Tien Shan, and the study of the morphology and spatial position of the sedimentary cover and basement structures. The compilation of the results of structural-geological and geophysical studies makes it possible to create a 2D model of the upper-crust geological structure, consistent with the structure of the electrical conductivity to depths of about 10 km and to analyze the structural features of deeper horizons. Two types of structural patterns of the electric conductivity, corresponding to the sedimentary complexes of the cover and the folded-metamorphic complexes of the basement, have been identified. Sedimentary rock complexes in depressions have a high electrical conductivity and subhorizontal structure. The upper crust above the K2 density layer is characterized by an alternation of rocks volumes with contrasting conductivity, elongated vertically. The recorded structure of the field confirms the presence of steep zones of fluid permeability and fragmentation, noted earlier in seismic profiles and probably corresponding to the Paleozoic structures of fragmentation of the Earth’s crust, activated during Alpine orogeny. Comprehensive research allow to characterize the deformations of the Cenozoic sedimentary complex and the surface of the Paleozoic basement associated with the Alpine activation of the key segment of the Tien Shan.



2021 ◽  
Vol 1 ◽  
pp. 137-143
Author(s):  
Elena A. Bataleva

The paper presents the results of the analysis of data from magnetotelluric soundings performed in 2003-2020. A comparison of geoelectric models for the Chui and Kochkor basins of the Northern Tien Shan is shown. The main objective of the study is to identify patterns in the distribution of geoelectric inhomogeneities in the deep structure of the Bishkek geodynamic test site. Particular attention in geoelectric models was paid to the study of key objects of transition zones from mountain ranges to intermontane basins. The nature of crustal electrical conductivity anomalies is considered.



2021 ◽  
Vol 2 (1) ◽  
pp. 345-353
Author(s):  
Elena A. Bataleva

The paper presents the results of the analysis of data from magnetotelluric soundings performed in 2003-2020. A comparison of geoelectric models for the Chui and Kochkor basins of the Northern Tien Shan is shown. The main objective of the study is to identify patterns in the distribution of geoelectric inhomogeneities in the deep structure of the Bishkek geodynamic test site. Particular attention in geoelectric models was paid to the study of key objects of transition zones from mountain ranges to intermontane basins. The nature of crustal electrical conductivity anomalies is considered.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Atanu Bhattacharya ◽  
Tobias Bolch ◽  
Kriti Mukherjee ◽  
Owen King ◽  
Brian Menounos ◽  
...  

AbstractKnowledge about the long-term response of High Mountain Asian glaciers to climatic variations is paramount because of their important role in sustaining Asian river flow. Here, a satellite-based time series of glacier mass balance for seven climatically different regions across High Mountain Asia since the 1960s shows that glacier mass loss rates have persistently increased at most sites. Regional glacier mass budgets ranged from −0.40 ± 0.07 m w.e.a−1 in Central and Northern Tien Shan to −0.06 ± 0.07 m w.e.a−1 in Eastern Pamir, with considerable temporal and spatial variability. Highest rates of mass loss occurred in Central Himalaya and Northern Tien Shan after 2015 and even in regions where glaciers were previously in balance with climate, such as Eastern Pamir, mass losses prevailed in recent years. An increase in summer temperature explains the long-term trend in mass loss and now appears to drive mass loss even in regions formerly sensitive to both temperature and precipitation.



Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 604
Author(s):  
Evgeny V. Vetrov ◽  
Johan De Grave ◽  
Natalia I. Vetrova ◽  
Fedor I. Zhimulev ◽  
Simon Nachtergaele ◽  
...  

The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental questions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras requires insights into the cooling history of the basement rocks as determined by low-temperature thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute timeframe. AFT dating of thirteen basement samples mainly yielded Cretaceous cooling ages and mean track lengths varied between 12.8 and 14.5 μm. Thermal history modeling based on the AFT data demonstrates several Mesozoic and Cenozoic intracontinental tectonic reactivation episodes affected the WSB basement. We interpreted the episodes of tectonic activity accompanied by the WSB basement exhumation as a far-field effect from tectonic processes acting on the southern and eastern boundaries of Eurasia during the Mesozoic–Cenozoic eras.



2011 ◽  
Vol 47 (6) ◽  
pp. 475-487 ◽  
Author(s):  
A. F. Grachev ◽  
D. M. Pechersky ◽  
V. A. Tsel’movich


2020 ◽  
Vol 57 (4) ◽  
pp. 375-388
Author(s):  
Ryan Bessen ◽  
Jennifer Gifford ◽  
Zack Ledbetter ◽  
Sean McGuire ◽  
Kyle True ◽  
...  

This project involved the construction of a detailed geologic map of the Park Reservoir, Wyoming 7.5-Minute Quadrangle (Scale 1:24,000). The Quadrangle occurs entirely in the Bighorn National Forest, which is a popular recreation site for thousands of people each year. This research advances the scientific understanding of the geology of the Bighorn Mountains and the Archean geology of the Wyoming Province. Traditional geologic mapping techniques were used in concert with isotopic age determinations. Our goal was to further subdivide the various phases of the 2.8–3.0 Ga Archean rocks based on their rock types, age, and structural features. This research supports the broader efforts of the Wyoming State Geological Survey to complete 1:24,000 scale geologic maps of the state. The northern part of the Bighorn Mountains is composed of the Bighorn batholith, a composite complex of intrusive bodies that were emplaced between 2.96–2.87 Ga. Our mapping of the Park Reservoir Quadrangle has revealed the presence of five different Archean quartzofeldspathic units, two sets of amphibolite and diabase dikes, a small occurrence of the Cambrian Flathead Sandstone, two Quaternary tills, and Quaternary alluvium. The Archean rock units range in age from ca. 2.96–2.75 Ga, the oldest of which are the most ancient rocks yet reported in the Bighorn batholith. All the Archean rocks have subtle but apparent planar fabric elements, which are variable in orientation and are interpreted to represent magmatic flow during emplacement. The Granite Ridge tear fault, which is the northern boundary of the Piney Creek thrust block, is mapped into the Archean core as a mylonite zone. This relationship indicates that the bounding faults of the Piney Creek thrust block were controlled by weak zones within the Precambrian basement rocks.



Sign in / Sign up

Export Citation Format

Share Document