scholarly journals Comparison of fluorescence excitation modes for cdse semi-conductor quantum dots used in medical research

Author(s):  
Y. A. Kuzishchin ◽  
I. L. Martynov ◽  
E. V. Osipov ◽  
P. S. Samokhvalov ◽  
A. A. Chistyakov ◽  
...  

Fluorescence spectroscopy is a powerful tool used in applied biological and medical research. Colloid semi-conductor quantum dots are promising fluorescent tags for simultaneous detection of different biopathogens. The techniques employing these tags can be improved by selecting the optimal modes for signal excitation and detection. The aim of the present work was to derive a mathematical expression to describe the signal-to-noise ratios in the pulsed and modulated excitation modes. Below, we compare these two modes of fluorescence excitation in ultralow quantities of quantum dots. We demonstrate that modulated excitation should be preferred for CdSe/ZnS quantum dots given that signal accumulation time is over 100 mc and the photosensor is exposed to background light of > 1 μW.

Author(s):  
Muhammad Farooq Saleem Khan ◽  
Mona Akbar ◽  
Jing Wu ◽  
Zhou Xu

Abstract In recent years, the application of fluorescence spectroscopy has been widely recognized in water environment studies. The sensitiveness, simplicity, and efficiency of fluorescence spectroscopy are proved to be a promising tool for effective monitoring of water and wastewater. The fluorescence excitation-emission matrix (EEMs) and synchronous fluorescence spectra have been widely used analysis techniques of fluorescence measurement. The presence of organic matter in water and wastewater defines the degree and type of pollution in water. The application of fluorescence spectroscopy to characterize dissolved organic matter (DOM) has made the water quality assessment simple and easy. With the recent advances in this technology, components of DOM are identified by employing parallel factor analysis (PARAFAC), a mathematical trilinear data modeling with EEMs. The majority of wastewater studies indicated that the fluorescence peak of EX/EM at 275nm/340nm is referred to tryptophan region (Peak T1). However, some researchers identified another fluorescence peak in the region of EX/EM at 225-237nm/340-381nm, which described the tryptophan region and labeled it as Peak T2. Generally, peak T is a protein-like component in the water sample, where T1 and T2 signals were derived from the <0.20µm fraction of pollution. Therefore, a more advanced approach, such as an online fluorescence spectrofluorometer, can be used for the online monitoring of water. The results of various waters studied by fluorescence spectroscopy indicate that changes in peak T intensity could be used for real-time wastewater quality assessment and process control of wastewater treatment works. Finally, due to its effective use in water quality assessment, the fluorescence technique is proved to be a surrogate online monitoring tool and early warning equipment.


2020 ◽  
Vol 10 (3) ◽  
pp. 178-188
Author(s):  
Bipin Rooj ◽  
Ankita Dutta ◽  
Debojyoti Mukherjee ◽  
Sahidul Islam ◽  
Ujjwal Mandal

Background: Understanding the interaction between different organic dyes and carbon quantum dots helps us to understand several photo physical processes like electron transfer, energy transfer, molecular sensing, drug delivery and dye degradation processes etc. Objective: The primary objective of this study is to whether the carbon quantum dots can act as an electron donor and can participate in the different photo physical processes. Methods: In this work, Carbon Quantum Dots (CQDLs) are synthesized in most economical and simple carbonization method where petals of Nelumbo nucifera L. are used as a carbon precursor. The synthesized CQDLs were characterized by using experimental techniques like UV−Vis absorption, FT-IR, Transmission Electron Microscopy (TEM), steadystate and time-resolved fluorescence spectroscopy. Results: The spectral analysis shows that the so synthesized CQDLs are spherical in shape and its diameter is around 4.2 nm. It shows the fluorescence emission maximum at 495 nm with a quantum yield of 4%. In this work the interaction between Carbon Quantum Dots (CQDLs) and an organic dye Malachite Green (MG) is studied using fluorescence spectroscopic technique under ambient pH condition (At pH 7). The quenching mechanism of CQDLs with MG was investigated using Stern-Volmer equation and time-resolved fluorescence lifetime studies. The results show that the dominant process of fluorescence quenching is attributed to Forster Resonance Energy Transfer (FRET) having a donor acceptor distance of 53 Å where CQDLs act as a donor and MG acts as an acceptor. Conclusion: This work has a consequence that CQDLs can be used as a donor species for different photo physical processes such as photovoltaic cell, dye sensitized solar cell, and also for antioxidant activity study.


2019 ◽  
Vol 301 ◽  
pp. 127118 ◽  
Author(s):  
Yanbing Lv ◽  
Fangfang Wang ◽  
Ning Li ◽  
Ruili Wu ◽  
Jinjie Li ◽  
...  

2017 ◽  
Vol 90 ◽  
pp. 343-348 ◽  
Author(s):  
Xiaoting Li ◽  
Beibei Chen ◽  
Man He ◽  
Han Wang ◽  
Guangyang Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document