scholarly journals A Comprehensive Review on Brain-Computer Interface Controlled Movements

2019 ◽  
Vol 5 (6) ◽  
pp. 3
Author(s):  
Kulsheet Kaur Virdi ◽  
Satish Pawar

A brain-computer interface (BCI), also referred to as a mind-machine interface (MMI) or a brain-machine interface (BMI), provides a non-muscular channel of communication between the human brain and a computer system. With the advancements in low-cost electronics and computer interface equipment, as well as the need to serve people suffering from disabilities of neuromuscular disorders, a new field of research has emerged by understanding different functions of the brain. The electroencephalogram (EEG) is an electrical activity generated by brain structures and recorded from the scalp surface through electrodes. Researchers primarily rely on EEG to characterize the brain activity, because it can be recorded noninvasively by using portable equipment. The EEG or the brain activity can be used in real time to control external devices via a complete BCI system. For these applications there is need of such machine learning application which can be efficiently applied on these EEG signals. The aim of this research is review different research work in the field of brain computer interface related to body parts movements.

A Brain-Computer Interface (BCI)is labeledas Mind-Machine Interface (MMI) or a Brain-Machine Interface (BMI). It affords a non-muscular channel of messagein between the computer and a human brain. Using the enhancements in interface equipment to electronics,and the necessity to helpindividuals suffering from disabilities, a new area in this study has begun by acceptingtasks of brain. The Electro-Encephalogram (EEG) is an electrical activity created by brain structures and verified from the scalp using electrodes. The EEG signal is used in actualspell to accomplishperipheral devices using a broad BCI system. The post-processed output signals are converted to suitable instructions to regulate output devices. The main seek is to aidparalyzed and physically immobilizedpersons to govern the home appliances making use of Electro-Encephalogram (EEG) signals, such that they grow to beautonomous. According to the brain responsiveness the devices can be designated then usingrelays, the switching of the home-basedmachinescan be completedconsequently.


Author(s):  
Igwe J. S. ◽  
Inyiama ◽  
OgbuNwani Henry

Every discovery is geared towards problem solving. This is manifested by the advent of brain computer interface (BCI). Brain computer interface (BCI) is a field of study concern with the detection and utilization of brain signals in establishing the communication path between the brain and the computer system. The knowledge of this science has helped in no small measure in providing solutions to several challenges befalling man and his environment. In this paper, we explored those areas where BCI has proved useful and pointed out as well its possible application in diagnosis of stroke disease. The discourse was centered on detection of electrochemical signals from the brain called electroencephalogram (EEG). The research work also highlighted the technique of recording brain activity via electroencephalogram and using it in making deduction on the status of stroke attack on individual. This can either be normal or abnormal. The presence of delta or theta wave in an awaked adult suggests an abnormal situation. While the observance of alpha, beta and gamma waves are interpreted as normal.


Proceedings ◽  
2018 ◽  
Vol 2 (18) ◽  
pp. 1179 ◽  
Author(s):  
Francisco Laport ◽  
Francisco J. Vazquez-Araujo ◽  
Paula M. Castro ◽  
Adriana Dapena

A brain-computer interface for controlling elements commonly used at home is presented in this paper. It includes the electroencephalography device needed to acquire signals associated to the brain activity, the algorithms for artefact reduction and event classification, and the communication protocol.


2020 ◽  
Vol 8 (6) ◽  
pp. 1275-1282

A brain-computer interface (BCI) provides a communication passage between the brain and an external stratagem. The Brain and its EEG signals are acquired from the BCI along its control signals and its widely used mechanism in the field of the biomedical fields. In this research work, an artifacts are removed algorithm in the EEG is developed and simulated in the MATLAB 2017a software tool. EEG signals from patients are recoded while recording some of the artificial signals added to it, which are instigated by using eye blinks, eye movement, muscle, and cardiac noise, and also non-biological sources. Using suitable filters these artificial signals can be removed. This paper aims to remove the artificial signals from EEG signals and parameters like mean, standard. Deviation are calculated and compared with other methods such as LAMICA and FASTERs. In the paper, it is also the proposed arrangement of EEG signals for the discovery of typical and anomalous exercises utilizing Wavelet change and Artificial Neural Network (ANN) Classifier is considered. Here, the framework utilizes the back proliferation with feed-forward for order which pursues the ANN grouping. Accuracy of the classification is calculated and compared with other states of art publications and found that it is better.


2017 ◽  
Vol 5 ◽  
pp. 187-191
Author(s):  
Martin Hudák ◽  
Radovan MadleĹˆĂˇk ◽  
Veronika Brezániová

Marketing can be described as a tool for companies to influence the consumer’s perception to the desired direction. The current market situation is characterized by dynamism, growing consumer power, and intense competition. The consumer perception and behavior are changing and therefore need to be constantly monitored and measured. The aim of this article is to scan and measure consumer’s perception while watching a video advertisement. During this experiment, an eye-tracking technology was used, which allows capturing a consumer’s gaze. The central part of the research is to measure the brain activity of a consumer based on the EEG (Electroencephalography). EMOTIV Epoc+ is a 14-channel wireless EEG, designed for contextualized research and advanced brain computer interface applications. An advertising campaign from four different mobile operators was used for this purpose. In the conclusion of this article, consumer’s perception of different advertising campaigns are compared and evaluated.


2020 ◽  
Vol 8 (6) ◽  
pp. 2370-2377

A brain-controlled robot using brain computer interfaces (BCIs) was explored in this project. BCIs are systems that are able to circumvent traditional communication channels (i.e. muscles and thoughts), to ensure the human brain and physical devices communicate directly and are in charge by converting various patterns of brain activity to instructions in real time. An automation can be managed with these commands. The project work seeks to build and monitor a program that can help the disabled people accomplish certain activities independently of others in their daily lives. Develop open-source EEG and brain-computer interface analysis software. The quality and performance of BCI of different EEG signals are compared. Variable signals obtained through MATLAB Processing from the Brainwave sensor. Automation modules operate by means of the BCI system. The Brain Computer Interface aims to build a fast and reliable link between a person's brain and a personal computer. The controls also use the Brain-Computer Interface for home appliances. The system will integrate with any smartphones voice assistant.


2013 ◽  
Vol 12 (2) ◽  
pp. 21-29 ◽  
Author(s):  
A. Ya. Kaplan ◽  
A. G. Kochetova ◽  
S. L. Shishkin ◽  
I. A. Basyul ◽  
I. P. Ganin ◽  
...  

Technology brain-computer interface (BCI) allow saperson to learn how to control external devices via thevoluntary regulation of own EEG directly from the brain without the involvement in the process of nerves and muscles. At the beginning the main goal of BCI was to replace or restore motor function to people disabled by neuromuscular disorders. Currently, the task of designing the BCI increased significantly, more capturing different aspects of life a healthy person. This article discusses the theoretical, experimental and technological base of BCI development and systematized critical fields of real implementation of these technologies.


2020 ◽  
Vol 37 (5) ◽  
pp. 831-837
Author(s):  
Mesut Melek ◽  
Negin Manshouri ◽  
Temel Kayikcioglu

Detailed In the brain-computer interface system (BCI), electroencephalography (EEG) signals are converted into digital signals and analyzed, allowing direct communication between humans and the electronic devices around them. The convenience of the user and the speed of communication with the surrounding devices are the most important challenges of BCI systems. The Emotiv Epoc headset minimizes the discomfort of the user thanks to its wet electrodes and easy handling. In the continuation of our previous works, in this paper, we developed our BCI system based on the gaze at the rotating vanes using the inexpensive Emotiv Epoc headset. In addition to user comfort, our design has an acceptable mean accuracy rate (ACC) and mean information transfer rate (ITR) compared to similar systems.


Author(s):  
Sravanth K. Ramakuri ◽  
Premkumar Chithaluru ◽  
Sunil Kumar

The human brain is the central organ of the human system. Many people in the world cannot move on their own and can't control things on their own. A person whose brain is active can control things using the neuro-controlled robot car. It is interesting to all types of people to measure their concentration and piece level of mind with the neuro sky mind wave device. One can easily control the robot's movements by simply blinking eyes; the robot's speed will be according to the subject's attention levels. The neuro sky mind wave device digitizes brain wave signals to power the user-interface of the computers, game, and health application. The neuro sky mind wave device will measure brain waves from the forehead. The paper aims to control a robot using the brain-computer interface concept without any muscular activity controlling healthcare applications directions. The brain activity is recorded with the neuro sky mind wave device's help, and the attention values are sent to the Arduino with the help of the HC-05 Bluetooth module. Arduino is programmed so that if the attention values between 0-29 and the person are relaxed, the green light will glow for the feedback.


2018 ◽  
Vol 210 ◽  
pp. 04046 ◽  
Author(s):  
Martin Strmiska ◽  
Zuzana Koudelkova

Brain-computer interface (BCI) is a device that enables the connection between the human brain and a computer, therefore, it allows us to observe the brain activity. The goal of this article is to prove that brain-computer interface is a helpful and quite precise tool. This goal will be achieved by presenting various examples from real-life situations. The results show that this device is indeed helpful, e.g. in a medical field, however, it is not commonly used in hospitals.


Sign in / Sign up

Export Citation Format

Share Document