scholarly journals Review on the Performance Evaluation of Thermal Exchangers using Different Baffle Designs

Author(s):  
Ajeet Kumar Mishra ◽  
Prof. Shamir Daniel ◽  
Prof. Amit Kumar Asthana

The thermal performance of a heat exchanger depends upon various parameters like inlet temperature of hot fluid, type of hot fluid, type of cold fluid, the shape of baffles, the material of baffles, baffles angle, and property of ribs. Basically fluid flow and heat transfer characteristics largely depend upon the Reynolds number (Re). Reynolds number is basically the ratio of inertia force to viscous force. Re is only the factor by which we can decide whether the fluid is laminar or turbulent in shell and tube type of heat exchanger. The heat exchanger is an adiabatic device in which heat is transferred from one fluid to another fluid across a plate surface. In this paper, we have introduced some special types of triangular baffles with rectangular channels. The purpose of this apparatus is to enhance the performance of the heat exchanger. Heat exchangers, nowadays, are one of the most important heat & mass transfer apparatuses in industries like oil refining; heat treatment plants, electric power generation, etc. are long service life.

Author(s):  
Haolin Ma ◽  
Alparslan Oztekin

Computational fluid dynamics and heat transfer simulations are conducted for a novel shell-tube type heat exchanger. The heat exchanger consists of tube with a narrow slot oriented in the streamwise direction. Numerical simulations are conducted for the Reynolds number of 1500. The 3D turbulent flow in the tube bank region is modeled by k-ε Reynolds stress averaging method by employing ANSYS FLUENT. 3-D transient flow and heat transfer simulations are conducted to determine the flow structure and temperature profiles in the wake of cylinders in the first row and other rows. The effects of the slot size and the orientation and the arrangement of the cylinder in different configuration will be examined. The slotted tube heat exchanger improved heat transfer by more than 27% compare to the traditional shell-tube heat exchanger without slots. Enhancement in heat transfer is even higher at higher values of Reynolds number.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Amarjit Singh ◽  
Satbir S. Sehgal

In this study, the experimental analysis was performed on the shell-and-tube type heat exchanger containing segmental baffles at different orientations. In the current work, three angular orientations (θ) 0°, 30°, and 60° of the baffles were analyzed for laminar flow having the Reynolds number range 303–1516. It was observed that, with increase of Reynolds number from 303 to 1516, there was a 94.8% increase in Nusselt number and 282.9% increase in pressure drop. Due to increase of Reynolds number from 303 to 1516, there is a decrease in nondimensional temperature factor for cold water (ω) by 57.7% and hot water (ξ) by 57.1%, respectively.


2009 ◽  
Vol 2009 (0) ◽  
pp. 31-32
Author(s):  
Toshihiko Shakouchi ◽  
Keiji Hori ◽  
Ichiro Suzaki ◽  
Koichi Tsujimoto ◽  
Toshitake Ando

2021 ◽  
pp. 255-255
Author(s):  
Xuexi Wang ◽  
Feng Lin

In this paper, the experimental and numerical study of thermo-hydraulic characteristics of perforated wavy fin heat exchanger and unperforated wavy fin heat exchanger were conducted. Firstly, the two kinds of fins were studied under different air inlet velocity and constant inlet temperature. The results show that Nusselt number increases with Reynolds number and friction factor decreases with Reynolds number. Then, the performance of the two kinds of fins is numerically analyzed, and the simulation results are in good agreement with the experimental data. On this basis, the influence of different perforated fin parameters (fin height H, fin pitch s, wave amplitude wa, perforation number n, perforation diameter d) on the thermal performance of wavy fin heat exchanger is discussed. It is indicated that friction factor and Nusselt number increase with increasing aperture, wave amplitude, fin pitch and perforation number or decreasing fin height under constant Reynolds number condition. Finally, the performance evaluation of heat exchangers with different parameters is carried out to obtain the best performance heat exchanger parameters, which can provide a reference for the design of the new wavy fin heat exchanger.


Author(s):  
Zhongchao Zhao ◽  
Kai Zhao ◽  
Dandan Jia ◽  
Pengpeng Jiang ◽  
Rendong Shen

As a new kind of highly compact and efficient micro-channel heat exchanger, printed circuit heat exchanger (PCHE) is a promising candidate satisfying the heat exchange requirements of liquefied natural gas (LNG) vaporization at low and high pressure. The effects of airfoil fin arrangement on heat transfer an flow resistance were numerically investigated using supercritical liquefied natural gas (LNG) as a working fluid. The thermal properties of supercritical LNG were tested by utilizing a REFPROF software database. Numerical simulation was performed using FLUENT. The inlet temperature of supercritical LNG was 121 K,and its pressure was 10.5MPa. The reference mass flow rate of LNG was set 1.22 g/s for the vertical pitch Lv = 1.67 mm and the staggered pitch Ls = 0 mm, with the Reynolds number of about 3750. The SST k-ω model with enhanced wall treatment was selected by comparing with the experimental data. The airfoil fin PCHE had better thermal-hydraulic performance than that of the straight channel PCHE. Moreover, the airfoil fins with staggered arrangement displayed better thermal performance than that of the fins with parallel arrangement. The thermal-hydraulic performance of airfoil fin PCHE was improved with increasing Ls and Lv. Moreover, Lv  affected on the Nusselt number and pressure drop of airfoil fin PCHE more obviously. In conclusion, a sparser staggered arrangement of fins showed a better thermal-hydraulic performance in airfoil fin PCHE.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fei Wang ◽  
Xiaobing Zhang

Purpose This study aims to present a numerical study on the flow and heat transfer performance of a water-cooled tube with protrusions in different geometrical parameters. Design/methodology/approach A new type of enhanced heat exchanger tube is designed. Protrusions are formed on the inner surface of the tube by mechanical expansion, compression and other processing methods. A three-dimensional numerical symmetry model is established by ANSYS for studying the influence of protrusion distance, protrusion radius and protrusion arrangement on flow and heat transfer characteristics in turbulent flow. Findings The results show that the protrusions increase the heat transfer area and improve the heat transfer effect but also increase the flow resistance. Performance evaluation criteria (PEC) is applied to evaluate the flow and heat transfer characteristics of convex tubes. When adopting the aligned protrusions arrangement, the radius of 2 mm and distance of twice the protrusion radius is most heat transfer effect. The PEC of protrusion tubes with a staggered arrangement are higher than those in aligned arrangement, and the maximum value is 2.36 when Reynolds number is 12,000. Originality/value At present, most of the protrusion technology applications are based on the cold plate heat dissipation of electronic devices, and the flow path is rectangular. Convex tube heat exchanger is a high-efficiency heat exchanger, which uses convex tubes instead of smooth tubes in tubular heat exchangers to enhance heat transfer and widely used in petroleum, chemical, textile, oil refining and other industries.


2020 ◽  
Vol 2020 (0) ◽  
pp. S05114
Author(s):  
Toshihiko SHAKOUCHI ◽  
Shoma OTA ◽  
Kazuma YAMAMURA ◽  
Koichi TSUJIMOTO ◽  
Toshitake ANDO ◽  
...  

Triple concentric-tube exchanger (TCTHE) is an improved version of double concentric tube heat exchanger (DCTHE). Introducing an intermediate tube to a DCTHE provides TCTHE and enhances the heat transfer performance. Recognizing the need of experimental results, extremely scarce in the literature and essential to validate theoretical analyses, the aim of this work is to investigate thermal behavior of TCTHE. The present study includes design, development and experimental analysis of TCTHE for oil (ISO VG 22) cooling application required for industrial purposes. It comprises of water (cooling fluid) flowing through innermost tube as well as outer annulus and oil (hot fluid) flows through inner annulus. The experimental studies of the temperature distribution for three fluids along the length and heat transfer characteristics for TCTHE under insulated condition for counter current flow mode are carried out and discussed. The effect of change in oil (hot fluid) temperatures is analyzed keeping water inlet temperatures same at various operating conditions. The experiments have been conducted by varying flow rate of one of the fluids at a time and keeping other two fluid flow rates constant. The results are expressed in terms of temperature variation for all three fluids along the length. The effect of change in hot fluid inlet temperature is expressed in terms of heat transfer rate variation with respect to Reynolds number. The variation of non-dimensional parameters as temperature effectiveness and thermal conductance with respect to Reynolds number is also presented in this paper. Theoretical studies are carried out for evaluation of heat transfer rate using empirical correlations. Experimental validation is carried out for degree of cooling at different Reynolds numbers with theoretical analysis


Sign in / Sign up

Export Citation Format

Share Document