scholarly journals Numerical analysis on heat transfer and flow resistance performances of a heat exchanger with novel perforated wavy fins

2021 ◽  
pp. 255-255
Author(s):  
Xuexi Wang ◽  
Feng Lin

In this paper, the experimental and numerical study of thermo-hydraulic characteristics of perforated wavy fin heat exchanger and unperforated wavy fin heat exchanger were conducted. Firstly, the two kinds of fins were studied under different air inlet velocity and constant inlet temperature. The results show that Nusselt number increases with Reynolds number and friction factor decreases with Reynolds number. Then, the performance of the two kinds of fins is numerically analyzed, and the simulation results are in good agreement with the experimental data. On this basis, the influence of different perforated fin parameters (fin height H, fin pitch s, wave amplitude wa, perforation number n, perforation diameter d) on the thermal performance of wavy fin heat exchanger is discussed. It is indicated that friction factor and Nusselt number increase with increasing aperture, wave amplitude, fin pitch and perforation number or decreasing fin height under constant Reynolds number condition. Finally, the performance evaluation of heat exchangers with different parameters is carried out to obtain the best performance heat exchanger parameters, which can provide a reference for the design of the new wavy fin heat exchanger.

2012 ◽  
Vol 557-559 ◽  
pp. 2141-2146
Author(s):  
Yong Hua You ◽  
Ai Wu Fan ◽  
Chen Chen ◽  
Shun Li Fang ◽  
Shi Ping Jin ◽  
...  

Trefoil-hole baffles have good thermo-hydraulic performances as the support of heat pipes, however the published research paper is relatively limited. The present paper investigates the shellside thermo-hydraulic characteristics of shell-and-tube heat exchanger with trefoil-hole baffles (THB-STHX) under turbulent flow region, and the variations of shellside Nusselt number, pressure loss and overall thermo-hydraulic performance (PEC) with Reynolds number are obtained for baffles of varied pitch with the numerical method. CFD results demonstrate that the trefoil-hole baffle could enhance the heat transfer rate of shell side effectively, and the maximal average Nusselt number is augmented by ~2.3 times that of no baffle, while average pressure loss increases by ~9.6 times. The PEC value of shell side lies in the range of 16.3 and 73.8 kPa-1, and drops with the increment of Reynolds number and the decrement of baffle pitch, which indicates that the heat exchanger with trefoil-hole baffles of larger pitch could generate better overall performance at low Reynolds number. Moreover, the contours of velocity, turbulent intensity and temperature are presented for discussions. It is found that shellside high-speed jet, intensive recirculation flow and high turbulence level could enhance the heat transfer rate effectively. Besides good performance, THB-STHXs are easily manufactured, thus promise widely applied in various industries.


2020 ◽  
Vol 10 (5) ◽  
pp. 610-621
Author(s):  
Taliv Hussain ◽  
Mohammad T. Javed

Introduction: A numerical study is performed in which the friction factor and forced convection heat transfer is studied for Al2O3 nanoparticle dispersed in water as a base fluid. Methods: Four concentrations of nanofluids in the range of 0-2.5 vol% have been simulated. The Reynolds Number is varied in the range of 100-500 by varying inlet velocity. Cross flow of air is assumed over the pipe with air velocity of 2.2 m/s. Results: The results depict that the friction factor decreases with an increase in flow rate and increases with increase in volume concentration. The maximum deviation for friction factor obtained by simulation from that obtained using Darcy’s relation is about 21.5% for water. Nusselt number increases with increase in Reynolds Number and nanofluid volume concentration with a maximum of 7653.68 W/m2 at a nanoparticle concentration of 2.5% and Reynolds Number of 500. Heat transfer rate enhancement of upto 13.6% is obtained as compared to pure water. The maximum increase in Nusselt Number is about 13.07% for a nanoparticle concentration of 2.5%. Conclusion: The simulation results are compared with established relations obtained by other researchers and there is a good agreement in terms of trends obtained. The deviations from established relations are also depicted.


2009 ◽  
Vol 131 (9) ◽  
Author(s):  
Liting Tian ◽  
Yaling He ◽  
Pan Chu ◽  
Wenquan Tao

In this paper, three-dimensional numerical simulations with renormalization-group (RNG) k-ε model are performed for the air-side heat transfer and fluid flow characteristics of wavy fin-and-tube heat exchanger with delta winglet vortex generators. The Reynolds number based on the tube outside diameter varies from 500 to 5000. The effects of different geometrical parameters with varying attack angle of delta winglet (β=30 deg, β=45 deg, and β=60 deg), tube row number (2–4), and wavy angle of the fin (θ=0–20 deg) are examined. The numerical results show that each delta winglet generates a downstream main vortex and a corner vortex. The longitudinal vortices are disrupted by the downstream wavy trough and only propagate a short distance along the main flow direction but the vortices greatly enhance the heat transfer in the wake region behind the tube. Nusselt number and friction factor both increase with the increase in the attack angle β, and the case of β=30 deg has the maximum value of j/f. The effects of the tube row number on Nusselt number and friction factor are very small, and the heat transfer and fluid flow become fully developed very quickly. The case of θ=5 deg has the minimum value of Nusselt number, while friction factor always increases with the increase in wavy angle. The application of delta winglet enhances the heat transfer performance of the wavy fin-and-tube heat exchanger with modest pressure drop penalty.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1570
Author(s):  
Yongfeng Ju ◽  
Tiezhu Zhu ◽  
Ramin Mashayekhi ◽  
Hayder I. Mohammed ◽  
Afrasyab Khan ◽  
...  

The hydrothermal performance of multiple semi-twisted tape inserts inside a heat exchanger pipe is numerically examined in three-dimensions. This study aims to find the optimum case for having the highest heat transfer enhancement with the lowest friction factor using nanofluid (Al2O3/water). A performance evaluation criterion (PEC) is defined to characterize the performance based on both friction factor and heat transfer. It was found that increasing the number of semi-twisted tapes increases the number of swirl flow streams and leads to an enhancement in the local Nusselt number as well as the friction factor. The average Nusselt number increases from 15.13 to 28.42 and the average friction factor enhances from 0.022 to 0.052 by increasing the number of the semi-twisted tapes from 0 to 4 for the Reynolds number of 1000 for the base fluid. By using four semi-twisted tapes, the average Nusselt number increases from 12.5 to 28.5, while the friction factor reduces from 0.155 to 0.052 when the Reynolds number increases from 250 to 1000 for the base fluid. For the Reynolds number of 1000, the increase in nanofluid concentration from 0 to 3% improves the average Nusselt number and friction factor by 6.41% and 2.29%, respectively. The highest PEC is equal to 1.66 and belongs to the Reynolds number of 750 using four semi-twisted tape inserts with 3% nanoparticles. This work offers instructions to model an advanced design of twisted tape integrated with tubes using multiple semi-twisted tapes, which helps to provide a higher amount of energy demand for solar applications.


Author(s):  
Khwanchit Wongcharee ◽  
Somsak Pethkool ◽  
Chinaruk Thianpong

This paper describes an experimental study of turbulent convective heat transfer and flow friction characteristics in a double tube heat exchanger equipped with propellers (2 blade-type). The propellers are used as the decaying swirl generators in the inner tube. The experiments were performed using the propellers with four different interval lengths (l = 1D, 2D, 3D and 4D where D is diameter of the inner tube), for the Reynolds number ranging from 5000 to 32,000, using water with temperature of 27°C and 70°C as cold and hot working fluids, respectively. The data of the tube equipped with the propellers are reported together with those of the plain tube, for comparison. The obtained results demonstrate that the heat transfer rate in term of Nusselt number (Nu) and friction factor (f) in the tube with propellers are higher than those in the plain tube at the similar operating conditions. This is due to the chaotic mixing and efficient interruption of thermal boundary layer caused by the propellers. In addition, the Nusselt number and friction factor in the tube fitted with the propellers increase as the interval length decreases. Depending on Reynolds number and interval length, Nusselt numbers and friction factors in the tube fitted with the propellers are augmented to 1.95 to 2.3 times and 5.8 to 13.2 times of those in the plain tube. In addition, the correlations of the Nusselt number (Nu) and the friction factor (f) for tube fitted with the propellers are reported and the performance evaluation to access the real benefits of using the turbulators is also determined.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6414
Author(s):  
Adriana Greco ◽  
Claudia Masselli

The aim of this paper is to research the parameters that optimize the thermal performances of a horizontal single-duct Earth to Air Heat eXchanger (EAHX). In this analysis, the EAHX is intended to be installed in the city of Naples (Italy). The study is conducted by varying the most crucial parameters influencing the heat exchange between the air flowing in the duct and the ground. The effect of the geometrical characteristics of the duct (pipe length, diameter, burial depth), and the thermal and flow parameter of humid air (inlet temperature and velocity) has been studied in order to optimize the operation of this geothermal system. The results reveal that the thermal performance increases with length until the saturation distance is reached. Moreover, if the pipe is designed with smaller diameters and slower air flows, if other conditions remain equal, the outlet temperatures come closer to the ground temperature. The combination that optimizes the performance of the system, carried out by forcing the EAHX with the design conditions for cooling and heating, is: D = 0.1 m s−1; v = 1.5 m s−1; L = 50 m. This solution could also be extended to horizontal multi-tube EAHX systems.


2016 ◽  
Vol 78 (8-4) ◽  
Author(s):  
Chin Yung Shin ◽  
Normah Mohd-Ghazali

In this research, the trapezoidal shaped chevron plate heat exchanger (PHE) is simulated using computational fluid dynamics (CFD) software to determine its heat transfer capacity and friction factor. The PHE is modelled with chevron angles from 30° to 60°, and also the performances are compared with the plain PHE. The validation is done by comparing simulation result with published references using 30° trapezoidal chevron PHE. The Nusselt number and friction factor obtained from simulation model is plotted against different chevron angles. The Nusselt number and friction factor is also compared with available references, which some of the references used sinusoidal chevron PHE. The general pattern of Nusselt number and friction factor with increasing chevron angle agrees with the references. The heat transfer capacity found in current study is higher than the references used, and at the same time, the friction factor also increased. Besides this, it is also found that the counter flow configuration has better heat transfer capacity performance than the parallel flow configuration.


2018 ◽  
Vol 240 ◽  
pp. 02012
Author(s):  
Dawid Taler

Some air-cooled heat exchangers, especially in air conditioning and heating installations, heat pumps, as well as car radiators, work in a wide range of loads when the liquid flow in the tubes can be laminar, transitional or turbulent. In this paper, a semi-empirical and empirical relationship for the Nusselt number on the liquid-side in the transitional and turbulent range was derived. The friction factor in the transition flow range Rew,trb ≤ Rew ≤ Rew,tre was calculated by linear interpolation between the values of the friction factor for Rew,trb =2,100 and Rew,tre =3,000. Based on experimental data for a car radiator, empirical heat transfer relationships for the air and water-side were found by using the least squares method. The water temperature at the outlet of the heat exchanger was calculated using P-NTU (effectiveness-number of transfer units) method. The heat flow rate from water to air was calculated as a function of the water flow rate to compare it with the experimental results. The theoretical and empirical correlation for the water-side Nusselt number developed in the paper were used when determining the heat flow rate. The calculation results agree very well with the results of the measurements.


Sign in / Sign up

Export Citation Format

Share Document