scholarly journals Thermohydraulic Analysis of Shell-and-Tube Heat Exchanger with Segmental Baffles

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Amarjit Singh ◽  
Satbir S. Sehgal

In this study, the experimental analysis was performed on the shell-and-tube type heat exchanger containing segmental baffles at different orientations. In the current work, three angular orientations (θ) 0°, 30°, and 60° of the baffles were analyzed for laminar flow having the Reynolds number range 303–1516. It was observed that, with increase of Reynolds number from 303 to 1516, there was a 94.8% increase in Nusselt number and 282.9% increase in pressure drop. Due to increase of Reynolds number from 303 to 1516, there is a decrease in nondimensional temperature factor for cold water (ω) by 57.7% and hot water (ξ) by 57.1%, respectively.

2021 ◽  
Vol 16 ◽  
pp. 145-152
Author(s):  
Farid Ahmed ◽  
Md Minaruzzaman Sumon ◽  
Muhtasim Fuad ◽  
Ravi Gugulothu ◽  
AS Mollah

Heat exchangers are almost used in every industry. Among them, shell and tube heat exchangers are covering around 32% of the total heat exchanger. Numerical simulation of the Computational models is playing an important role for the prototypes including the Heat Exchanger Models for the improvement in modeling. In this study, the CFD analysis of parallel and counter flow shell and tube heat exchanger was performed. Following project, looked into the several aspects and these are the temperature, velocity, and pressure drop and turbulence kinetic energy along with the heat exchanger length. Hot water was placed in tube side and cold water was placed in shell side of the heat exchanger. Shell side cold temperature was increasing along the heat exchanger length. On the other side, tube side hot water temperature was decreasing along the tube length. This effect was more significance in counter flow rather than the parallel flow. Velocity was more fluctuating in the shell side due to presence of the baffles. Also following the same reason, pressure drop was higher in the shell side cold water rather than the tube side hot water. To measure the turbulence effect, turbulence kinetic energy was determined. Turbulence was decreasing first part of the shell and tube heat exchanger. But, it was increasing along through the rest part heat exchanger. All these observations and the outcomes are evaluated and then further analyzed


2018 ◽  
Vol 6 (3) ◽  
pp. 1-12
Author(s):  
Kamil Abdul Hussien

Abstract-The present work investigates the enhancement of heat transfer by using different number of circular fins (8, 10, 12, 16, and 20) in double tube counter flow heat exchanger experimentally. The fins are made of copper with dimensions 66 mm OD, 22 mm ID and 1 mm thickness. Each fin has three of 14 mm diameter perforations located at 120o from each to another. The fins are fixed on a straight smooth copper tube of 1 m length, 19.9 mm ID and 22.2 mm OD. The tube is inserted inside the insulated PVC tube of 100 mm ID. The cold water is pumped around the finned copper tube, inside the PVC, at mass flow rates range (0.01019 - 0.0219) kg/s. The Reynold's number of hot water ranges (640 - 1921). The experiment results are obtained using six double tube heat exchanger (1 smooth tube and the other 5 are finned one). The results, illustrated that the heat transfer coefficient proportionally with the number of fin. The results also showed that the enhancement ratio of heat transfer for finned tube is higher than for smooth tube with (9.2, 10.2, 11.1, 12.1 13.1) times for number of fins (8, 10, 12, 16 and 20) respectively.


2021 ◽  
Vol 6 (1) ◽  
pp. 69-75
Author(s):  
Taiwo O. Oni ◽  
Ayotunde A. Ojo ◽  
Daniel C. Uguru-Okorie ◽  
David O. Akindele

A shell-and-tube heat exchanger which was subjected to different flow configurations, viz. counter flow, and parallel flow, was investigated. Each of the flow configurations was operated under two different conditions of the shell, that is, an uninsulated shell and a shell insulated with fiber glass. The hot water inlet temperature of the tube was reduced gradually from 60 oC to 40 oC, and performance evaluation of the heat exchanger was carried out. It was found that for the uninsulated shell, the heat transfer effectiveness for hot water inlet temperature of 60, 55, 50, 45, and 40 oC are 0.243, 0.244, 0.240, 0.240, and 0.247, respectively, for the parallel flow arrangement. For the counter flow arrangement, the heat transfer effectiveness for the uninsulated shell are 2.40, 2.74, 5.00, 4.17, and 2.70%, respectively, higher than those for the parallel flow. The heat exchanger’s heat transfer effectiveness with fiber-glass-insulated shell for the parallel flow condition with tube hot water inlet temperatures of 60, 55, 50, 45, and 40 oC are 0.223, 0.226, 0.220, 0.225, and 0.227, respectively, whereas the counter flow condition has its heat transfer effectiveness increased by 1.28, 1.47, 1.82, 1.11, and 1.18%, respectively, over those of the parallel flow.


2014 ◽  
Vol 591 ◽  
pp. 3-6
Author(s):  
M. Raja ◽  
R. Vijayan ◽  
R. Vivekananthan ◽  
M.A. Vadivelu

In the present work, the effect of nanofluid in a shell and tube heat exchanger was studied numerically. The effects of Reynolds number, volume concentration of suspended nanoparticles on the heat transfer characteristics were investigated using CFD software. Finally, the effect of the nanofluid on Shell and tube heat exchanger performance was studied and compared to that of a conventional fluid (i.e., water).


1990 ◽  
Vol 112 (1) ◽  
pp. 64-70 ◽  
Author(s):  
S. A. Idem ◽  
A. M. Jacobi ◽  
V. W. Goldschmidt

The effects upon the performance of an air-to-water copper finned-tube crossflow heat exchanger due to condensation on the outer surface are considered. A four-tube, two-pass heat exchanger was tested over a Reynolds number range (based on hydraulic diameter) from 400 to 1500. The coil was operated both in overall parallel and overall counterflow configurations. Convective heat and mass transfer coefficients are presented as plots of Colburn j-factor versus Reynolds number. Pressure losses are, similarly, presented as plots of the friction factor versus Reynolds number. Enhancement of sensible heat transfer due to the presence of a condensate film is also considered.


2012 ◽  
Vol 557-559 ◽  
pp. 2141-2146
Author(s):  
Yong Hua You ◽  
Ai Wu Fan ◽  
Chen Chen ◽  
Shun Li Fang ◽  
Shi Ping Jin ◽  
...  

Trefoil-hole baffles have good thermo-hydraulic performances as the support of heat pipes, however the published research paper is relatively limited. The present paper investigates the shellside thermo-hydraulic characteristics of shell-and-tube heat exchanger with trefoil-hole baffles (THB-STHX) under turbulent flow region, and the variations of shellside Nusselt number, pressure loss and overall thermo-hydraulic performance (PEC) with Reynolds number are obtained for baffles of varied pitch with the numerical method. CFD results demonstrate that the trefoil-hole baffle could enhance the heat transfer rate of shell side effectively, and the maximal average Nusselt number is augmented by ~2.3 times that of no baffle, while average pressure loss increases by ~9.6 times. The PEC value of shell side lies in the range of 16.3 and 73.8 kPa-1, and drops with the increment of Reynolds number and the decrement of baffle pitch, which indicates that the heat exchanger with trefoil-hole baffles of larger pitch could generate better overall performance at low Reynolds number. Moreover, the contours of velocity, turbulent intensity and temperature are presented for discussions. It is found that shellside high-speed jet, intensive recirculation flow and high turbulence level could enhance the heat transfer rate effectively. Besides good performance, THB-STHXs are easily manufactured, thus promise widely applied in various industries.


2016 ◽  
Vol 9 (2) ◽  
pp. 184-193 ◽  
Author(s):  
Anna Vasičkaninová ◽  
Monika Bakošová

Abstract Possibilities of using robust controllers for a shell-and-tube heat exchanger control were studied, tested and compared by simulations and obtained results are presented in this paper. The heat exchanger was used to pre-heat petroleum by hot water; the controlled output was the measured output temperature of the heated fluid — petroleum, and the control input was the volumetric flow rate of the heating fluid — water. Robust controllers were designed using ℋ2, ℋ∞, ℋ2/ℋ∞ strategies and μ-synthesis. A comparison with the classical PID control demonstrated the superiority of the proposed robust control especially in case when the controlled process is affected by disturbances.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Shobhana Singh ◽  
Kim Sørensen ◽  
Thomas Condra

In the present work, a numerical analysis of conjugate heat transfer and fluid flow in vortex generator (VG) enhanced double-fin and tube heat exchanger is carried out. The enhanced design aims to improve the heat transfer performance of a conventional double-fin and tube heat exchanger for waste heat recovery applications. A three-dimensional (3D) numerical model is developed using ANSYS cfx to simulate fluid flow and conjugate heat transfer process. Numerical simulations with rectangular winglet vortex generators (RWVGs) at five different angles of attack (−20deg≤α≤20deg) are performed for the Reynolds number range of 5000≤Re≤11,000. Salient performance characteristics are analyzed in addition to the temperature distribution and flow fields. Based on the numerical results, it is concluded that the overall performance of the double-fin and tube heat exchanger can be improved by 27–91% by employing RWVGs at α=−20deg for the range of Reynolds number investigated. The study provides useful design information and necessary performance data that can be adopted for the design development of the heat exchanger at a lower manufacturing cost.


Author(s):  
Haolin Ma ◽  
Alparslan Oztekin

Computational fluid dynamics and heat transfer simulations are conducted for a novel shell-tube type heat exchanger. The heat exchanger consists of tube with a narrow slot oriented in the streamwise direction. Numerical simulations are conducted for the Reynolds number of 1500. The 3D turbulent flow in the tube bank region is modeled by k-ε Reynolds stress averaging method by employing ANSYS FLUENT. 3-D transient flow and heat transfer simulations are conducted to determine the flow structure and temperature profiles in the wake of cylinders in the first row and other rows. The effects of the slot size and the orientation and the arrangement of the cylinder in different configuration will be examined. The slotted tube heat exchanger improved heat transfer by more than 27% compare to the traditional shell-tube heat exchanger without slots. Enhancement in heat transfer is even higher at higher values of Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document