scholarly journals Analysis of the effect of exhaust aftertreatment systems con-figurations on the temperature measured in the exhaust sys-tem of a spark-ignition engine

2019 ◽  
Vol 24 (6) ◽  
pp. 263-267
Author(s):  
Maciej Siedlecki ◽  
Paweł Fuć ◽  
Barbara Sokolnicka ◽  
Natlia Szymlet

The article discusses the effect of exhaust aftertreatment systems configuration on the resulting exhaust gas temperature at selected points of the exhaust system. Catalytic reactors and particle filters must reach a specific temperature in order to effectively perform their functions. The temperature they obtain decreases with the increasing distance from the exhaust manifold, as the gases cool along the way. The performed research consisted of measuring the exhaust gas temperature in various places of the exhaust system in simulated driving conditions mapped on the dynamic engine brake station in the aspect of using a particulate filter and its resulting operating efficiency due to the temperature. Measuring the temperature using thermo-couples allowed to assess the probability of achieving full operation of the filters during urban and extra-urban exploitation in a simulation of real driving conditions.

Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) have forced automotive manufacturers to equip a diesel particulate filter (DPF) on diesel cars. Generally, postinjection is used as a method to regenerate the DPF. However, it is known that postinjection deteriorates the specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration is one of the key technologies for diesel powertrains equipped with a DPF. This paper presents correlations between the fuel injection strategy and exhaust gas temperature for DPF regeneration. The experimental apparatus consists of a single-cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, the postinjection timing was in the range of 40 deg aTDC to 110 deg aTDC and double postinjection was considered. In addition, the effects of the injection pressure were investigated. The engine load was varied among low load to midload conditions, and the amount of fuel of postinjection was increased up to 10 mg/stk. The oil dilution during the fuel injection and combustion processes was estimated by the diesel loss measured by comparing two global equivalences ratios: one measured from a lambda sensor installed at the exhaust port and one estimated from the intake air mass and injected fuel mass. In the present study, the differences of the global equivalence ratios were mainly caused by the oil dilution during postinjection. The experimental results of the present study suggest optimal engine operating conditions including the fuel injection strategy to obtain an appropriate exhaust gas temperature for DPF regeneration. The experimental results of the exhaust gas temperature distributions for various engine operating conditions are discussed. In addition, it was revealed that the amount of oil dilution was reduced by splitting the postinjection (i.e., double postinjection). The effects of the injection pressure on the exhaust gas temperature were dependent on the combustion phasing and injection strategies.


Author(s):  
Hyunjun Lee ◽  
Jaesik Shin ◽  
Manbae Han ◽  
Myoungho Sunwoo

The successful utilization of a diesel particulate filter (DPF) to reduce particulate matter (PM) in a passenger car diesel engine necessitates a periodic regeneration of the DPF catalyst without deterioration of the drivability and emission control performance. For successful active DPF regeneration, the exhaust gas temperature should be over 500 °C to oxidize the soot loaded in the DPF. Previous research increased the exhaust gas temperature by applying early and late post fuel injection with a look-up table (LUT) based feedforward control implemented into the engine management system (EMS). However, this method requires enormous calibration work to find the optimal timing and quantity of the main, early, and late post fuel injection with less certainty of accurate torque control. To address this issue, we propose a cylinder pressure based multiple fuel injection (MFI) control method for active DPF regeneration. The feedback control of the indicated mean effective pressure (IMEP), lambda, and DPF upstream temperature was applied to precisely control the injection quantity of the main, early, and late post fuel injection. To determine their fuel injection timings, a mass fraction burned 60% after location of the rate of heat release maximum (MFB60aLoROHRmax) was proposed based on the cylinder pressure information. The proposed control method was implemented in an in-house EMS and validated at several engine operating conditions. During the regeneration period, the exhaust gas temperature tracked the desired temperature, and the engine torque fluctuation was minimized with minimal PM and NOx emissions.


2014 ◽  
Vol 555 ◽  
pp. 375-384 ◽  
Author(s):  
Stelian Tarulescu ◽  
Adrian Soica

This paper present a study regarding the emissions produced at the engine cold start. Also, the paper presents a brief survey of current extra emissions estimation methods. The main goal of this work is to describe the relative cold start extra emissions as a function of exhaust gas temperature. Experimental research has been done for a light vehicle, Dacia Sandero, equipped with a 1390 cm3 Renault spark ignition engine (Power = 55 kW at 5500 rpm). There were been made several tests, in different temperature conditions, in the could season, using a portable analyzer, GA-21 plus (produced by Madur Austria). The parameters measured with the analyzer and used in the analysis are: CO, NO, NOx and SO2. It was concluded that the highest pollutants values ​​are recorded until the point when the catalyst comes into operation (when the gas temperature entering the catalyst is approx. 200 oC) and exhaust gas temperature is 40-50 oC. In order to accomplish a mathematical approximation of CO, NO and SO2 in function of exhaust gas temperature, logarithmic approximations and polynomial regressions were used. The curves resulted from the mathematical model can be used to approximate the level of CO, NO and SO2, for similar vehicles.


2021 ◽  
Vol 09 (08) ◽  
pp. 53-78
Author(s):  
Joseph Lungu ◽  
Lennox Siwale ◽  
Rudolph Joe Kashinga ◽  
Shadreck Chama ◽  
Akos Bereczky

2019 ◽  
Vol 19 (4) ◽  
pp. 381-404
Author(s):  
Ahmed Mohsin Gatea ◽  
Karima Esmaeel Amori ◽  
Hammid Unis Salih

Liquefied petroleum gas LPG is a good alternative to gasoline fuel. It has emerged as a solution to the deteriorating urban air quality problem especially in an oil country like Iraq. Computational model  is used for parametric study of spark ignition engine works on Iraqi fuel (gasoline or LPG). Transient one dimensional continuity, momentum and energy equations are solved by two – step Lax wender off (Ritchmyer) approach to evaluate brake specific fuel consumption BSFC, brake power, brake thermal efficiency, volumetric efficiency, air fuel ratio, in cylinder pressure and exhaust gas temperature. Results revealed that LPG fuel improves BSFC by 3.11% as a maximum compare to gasoline for 10 kW brake power and 9.9:1 compression ratio. The maximum cylinder pressures predicted for LPG are lower than that for gasoline fuel. The volumetric efficiency was 76.8 % for engine works with, LPG at compression ratio 9.9:1. While that for gasoline was 85.9%. The equivalence ratio is higher for gasoline than that for LPG, since the first required higher air-fuel ratio for combustion. The reported maximum exhaust gas temperature for LPG is 706oC, while that for gasoline is 741.4oC.


Author(s):  
Karthik Nithyanandan ◽  
Chia-fon F. Lee ◽  
Han Wu ◽  
Jiaxiang Zhang

Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuels which typically emit fewer pollutants, but also lowers the cost of fuel recovery for each individual component during fermentation. An experiment was conducted using a Ford single-cylinder spark-ignition (SI) research engine to investigate the potential of ABE as an SI engine fuel. Blends of pure gasoline and ABE, ranging from 0% to 80% vol. ABE, were created and the performance and emission characteristics were compared with pure gasoline as the baseline. Measurements of brake torque and exhaust gas temperature along with in-cylinder pressure traces were used to study the performance of the engine and measurements of emissions of unburned hydrocarbons, carbon monoxide, and nitrogen oxides were used to compare the fuels in terms of combustion byproducts. Experiments were performed at a constant engine speed and a comparison was made on the basis of similar power output (Brake Mean Effective Pressure (BMEP)). In-cylinder pressure data showed that the peak pressure of all the blends was slightly lower than that of gasoline, except for ABE80 which showed a slightly higher and advanced peak relative to gasoline. ABE showed an increase in brake specific fuel consumption (BSFC); while exhaust gas temperature and nitrogen oxide measurements show that ABE combusts at a lower peak temperature. The emissions of unburned hydrocarbons were higher compared to those of gasoline but the CO emissions were lower. Of particular interest is the combined effect of the higher laminar flame speed (LFS) and higher latent heat of vaporization of ABE fuels on the combustion process.


Author(s):  
Junfeng Zhao ◽  
Junmin Wang

For hybrid electric vehicles (HEVs), especially for diesel-electric hybrid vehicles, the low exhaust gas temperature induced by the hybridization and fuel economy optimization will bring significant impact on the performance of the exhaust gas aftertreatment systems, and may consequently lead to violation of the tailpipe emission constraints. To investigate the influence of diesel powertrain hybridization on the aftertreatment system and tailpipe emissions, an integrated HEV model is established by incorporating the thermodynamics models of the aftertreatment systems. This comprehensive model is able to predict engine-out nitrogen oxides (NOx) concentration, exhaust gas temperature, and to describe the temperature dynamics in the aftertreatment systems. A static map of selective catalytic reduction (SCR) system temperature-dependent de-NOx efficiency is utilized, so that the tailpipe NOx can be predicted. To investigate the tradeoff between fuel consumption and emissions for diesel HEV with aftertreatment systems, a preliminary study is carried out on optimally balancing both aspects via a model predictive control scheme. This controller is designed with an explicit consideration of HEV tailpipe NOx emission constraint. The simulation results show that the HEV tailpipe NOx emissions can be regulated by slightly sacrificing the fuel economy.


Sign in / Sign up

Export Citation Format

Share Document