scholarly journals Mobile IP Address Efficiency

2017 ◽  
Vol 2 (1) ◽  
pp. 30
Author(s):  
Zhen Zhen ◽  
Srinivas Sampalli

In future wireless networks, Mobile IP will be widely deployed as a general mobility protocol. Currently, in theprotocol each mobile node (MN) should have one public home address to identify itself when it is away from home. Unlike the stationary host, the MN cannot simply use private addresses when NAT (Network Address Translation) is enabled. How to assign public addresses among mobile nodes is important to save the already limited IPv4 addresses. Even though Mobile IPv6 can provide a large address space, when communicating with IPv4 based hosts, the MN still needs to use one public IPv4 address. Protocol translation can map between IPv6 and IPv4 addresses;however, it is a NAT-based approach and breaks end-to-endcommunications. From a new perspective, we propose anaddress-sharing mechanism that allows a large number of MNs to share only one IPv4 public address while avoiding most of the drawbacks of NAT.

2014 ◽  
Vol 2014 ◽  
pp. 1-16
Author(s):  
Peer Azmat Shah ◽  
Halabi B. Hasbullah ◽  
Ibrahim A. Lawal ◽  
Abubakar Aminu Mu’azu ◽  
Low Tang Jung

Due to the proliferation of handheld mobile devices, multimedia applications like Voice over IP (VoIP), video conferencing, network music, and online gaming are gaining popularity in recent years. These applications are well known to be delay sensitive and resource demanding. The mobility of mobile devices, running these applications, across different networks causes delay and service disruption. Mobile IPv6 was proposed to provide mobility support to IPv6-based mobile nodes for continuous communication when they roam across different networks. However, the Route Optimization procedure in Mobile IPv6 involves the verification of mobile node’s reachability at the home address and at the care-of address (home test and care-of test) that results in higher handover delays and signalling overhead. This paper presents an enhanced procedure, time-based one-time password Route Optimization (TOTP-RO), for Mobile IPv6 Route Optimization that uses the concepts of shared secret Token, time based one-time password (TOTP) along with verification of the mobile node via direct communication and maintaining the status of correspondent node’s compatibility. The TOTP-RO was implemented in network simulator (NS-2) and an analytical analysis was also made. Analysis showed that TOTP-RO has lower handover delays, packet loss, and signalling overhead with an increased level of security as compared to the standard Mobile IPv6’s Return-Routability-based Route Optimization (RR-RO).


2021 ◽  
Author(s):  
Bingxin Chen ◽  
Lifei Kuang ◽  
Wei He

Abstract Today, with the rapid development of information age, the communication of science and technology is getting closer to each other, and our country has begun to conduct in-depth research on WSN. This study mainly discusses the computer simulation algorithm of gymnastics formation transformation path based on wireless sensor. In this study, an improved leader follower method is designed. In the research of gymnastics formation transformation of mobile nodes in wireless sensor network environment, the traditional three types of nodes are divided into four categories according to different formation responsibilities, namely coordinator, beacon node, leader and follower. When it makes accurate positioning with the help of beacon node information, it will send the information in the form of broadcast, and then the coordinator will send the information to the host computer through the serial port for tracking display. In order to make the mobile nodes in the network keep the current gymnastics formation moving towards the target point after completing the gymnastics formation transformation, this paper uses the L - φ closed-loop control method to modify the gymnastics formation in real time. The method based on the received signal strength is used to locate the mobile node. Combined with the positioning engine in the core processor CC2431 of the mobile node, the efficient and low-energy wireless positioning can be realized. Multiple mobile nodes coordinate and control each other, and each node communicates with each other through wireless mode, and senses its own heading angle information through geomagnetic sensor, so as to judge and adjust the maintenance and transformation of the current gymnastics formation. In the process of formation transformation, the analysis shows that the maximum offset of follower2 relative to the ideal path is + 0.28M in the process of marching to the desired position in the triangle queue. This research effectively realizes the computer simulation of autonomous formation.


2021 ◽  
Vol 18 (4) ◽  
pp. 1287-1293
Author(s):  
M. P. Haripriya ◽  
P. Venkadesh

The 5G mobile wireless network systems faces a lot of security issues due to the opening of network and its insecurity. The insecure network prone to various attacks and it disrupts secure data communications between legitimate users. Many works have addressed the security problems in 3G and 4G networks in efficient way through authentication and cryptographic techniques. But, the security in 5G networks during data communication was not improved. Subtractive Gradient Boost Clustered Node Authentication (SGBCNA) Method is introduced to perform secure data communication. The subtractive gradient boost clustering technique is applied to authenticate the mobile node as normal nodes and malicious nodes based on the selected features. The designed ensemble clustering model combines the weak learners to make final strong clustering results with minimum loss. Finally, the malicious nodes are eliminated and normal mobile nodes are taken for performing the secured communication in 5G networks. Simulation is carried out on factors such as authentication accuracy, computation overhead and security level with respect to a number of mobile nodes and data packets. The observed outcomes clearly illustrate that the SGBCNA Method efficiently improves node authentication accuracy, security level with minimum overhead than the state-of-the-art-methods.


Author(s):  
Vasuky Mohanan ◽  
Rahmat Budiarto ◽  
Sivakumar Ramakrishnan

4G networks provide bandwidth of up to 1Gbps for a Mobile Node (MN) that is moving at pedestrian speed. On the other hand, it also supports mobile nodes that can move at a speed of 250 km/hr with bandwidths value of 100 Mbps. This sets the premise of a network that supports diverse needs. This goal will be harder to achieve if Network Selection Problems (NSP) are not addressed comprehensively. NSP refers to the selection of target access network selection from a collection of Candidate Networks (CNs) when MNs are moving from one access network into another. The most logical way of achieving this is to select the “best” network. This translates to identifying performance values of the CNs. The analysis in this chapter shows clearly that access network selection done based on limited criteria is detrimental in achieving optimum communication. Instead, this chapter suggests a framework that would be complementary to a 4G network.


Author(s):  
Tayo Arulogun ◽  
Ahmad AlSa'deh ◽  
Christoph Meinel

Mobile Internet Protocol (MIP) enables a mobile node to be recognized via a single IP address while the node moves between different networks. MIP attains the connectivity to nodes everywhere without user intervention. One general improvement in Mobile IPv6 (MIPv6) compared to MIPv4 is the enhanced security. However, there are areas still susceptible to various kinds of attacks. Security approaches for the MIPv6 are still in progress and there are few unsolved concerns and problems. This chapter focuses on MIPv6 security considerations, potential threats, and possible defense mechanisms. The authors discuss and analyze in detail the MIPv6 mobility management and security approaches with respect to the efficiency and complexity and bring forward some constructive recommendations.


Author(s):  
Omar Raoof ◽  
Hamed Al-Raweshidy

This chapter proposes a novel game-based green interface/network selection mechanism that is an extension to the multi-interface fast-handover mobile IPv6 protocol and works when the mobile node has more than one wireless interface. The mechanism controls the handover decision process by deciding whether a handover is needed or not and helps the node to choose the right access point at the right time. Additionally, the mechanism switches the mobile nodes interfaces “ON” and “OFF” when needed to control the mobile node’s energy consumption and improves the handover latency.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1510 ◽  
Author(s):  
Prakash Veeraraghavan ◽  
Dalal Hanna ◽  
Eric Pardede

The Internet Protocol (IP) version 4 (IPv4) has several known vulnerabilities. One of the important vulnerabilities is that the protocol does not validate the correctness of the source address carried in an IP packet. Users with malicious intentions may take advantage of this vulnerability and launch various attacks against a target host or a network. These attacks are popularly known as IP Address Spoofing attacks. One of the classical IP-spoofing attacks that cost several million dollars worldwide is the DNS-amplification attack. Currently, the availability of solutions is limited, proprietary, expensive, and requires expertise. The Internet is subjected to several other forms of amplification attacks happening every day. Even though IP-Spoofing is one of the well-researched areas since 2005, there is no holistic solution available to solve this problem from the gross-root. Also, every solution assumes that the attackers are always from outside networks. In this paper, we provide an efficient and scalable solution to solve the IP-Spoofing problem that arises from malicious or compromised inside hosts. We use a modified form of Network Address Translation (NAT) to build our solution framework. We call our framework as NAT++. The proposed infrastructure is robust, crypto-free, and easy to implement. Our simulation results have shown that the proposed NAT++ infrastructure does not consume more than the resources required by a simple NAT.


Author(s):  
Z. Abdul-Mehdi ◽  
A. Mamat ◽  
H. Ibrahim ◽  
M. Dirs

In this article, we consider the distributed database that can make up mobile nodes and the peer-to-peer concept. These nodes are peers and may be replicated both for fault-tolerance, dependability, and to compensate for nodes that are currently disconnected. Thus we have a distributed replicated database where several sites must participate in the synchronization of transactions. The capabilities of the distributed replicated database are extended to allow mobile nodes to plan disconnection, with the capability of updating the database on behalf of the mobile node by using a fixed proxy server to make these updates during the mobile disconnection, once a mobile reconnects automatically, synchronously, and integrates into the database.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1444
Author(s):  
Seungwoon Lee ◽  
Si Jung Kim ◽  
Jungtae Lee ◽  
Byeong-hee Roh

Although network address translation (NAT) provides various advantages, it may cause potential threats to network operations. For network administrators to operate networks effectively and securely, it may be necessary to verify whether an assigned IP address is using NAT or not. In this paper, we propose a supervised learning-based active NAT device (NATD) identification using port response patterns. The proposed model utilizes the asymmetric port response patterns between NATD and non-NATD. In addition, to reduce the time and to solve the security issue that supervised learning approaches exhibit, we propose a fast and stealthy NATD identification method. The proposed method can perform the identification remotely, unlike conventional methods that should operate in the same network as the targets. The experimental results demonstrate that the proposed method is effective, exhibiting a F1 score of over 90%. With the efficient features of the proposed methods, we recommend some practical use cases that can contribute to managing networks securely and effectively.


Sign in / Sign up

Export Citation Format

Share Document