Mapping of induced polarization using natural fields

Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 137-147 ◽  
Author(s):  
Erika Gasperikova ◽  
H. Frank Morrison

The observed electromagnetic response of a finite body is caused by induction and polarization currents in the body and by the distortion of the induction currents in the surrounding medium. At a sufficiently low frequency, there is negligible induction and the measured response is that of the body distorting the background currents just as it would distort a direct current (dc). Because this dc response is not inherently frequency dependent, any observed change in response of the body for frequencies low enough to be in this dc limit must result from frequency‐dependent conductivity. Profiles of low‐frequency natural electric (telluric) fields have spatial anomalies over finite bodies of fixed conductivity that are independent of frequency and have no associated phase anomaly. If the body is polarizable, the electric field profile over the body becomes frequency dependent and phase shifted with respect to a reference field. The technique was tested on data acquired in a standard continuous profiling magnetotelluric (MT) survey over a strong induced polarization (IP) anomaly previously mapped with a conventional pole‐dipole IP survey. The extracted IP response appears in both the apparent resistivity and the normalized electric field profiles.

2010 ◽  
Vol 6 (1) ◽  
pp. 31 ◽  
Author(s):  
Cristina Peratta ◽  
Andres Peratta ◽  
Dragan Poljak

The paper introduces a three dimensional multidomainboundary element model of a pregnant woman and foetus for the analysis of exposure to high voltage extremely low frequency electric fields. The definition of the differentphysical and geometrical properties of the relevant tissues is established according to medical information available in existing literature. The model takes into account changes in geometry, body mass, body fat, and overall chemical composition in the body which influence the electrical properties, throughout the different gestational periods. The developed model is used to solve the case of exposure to overhead power transmission lines at different stages of pregnancy including weeks 8, 13, 26 and 38. The results obtained are in line with those published in the earlier works considering different approaches. In addition, a sensitivity analysis involving varying scenarios of conductivity, foetus postures and geometry for each stage is defined and solved. Finally, a correlation between the externally applied electric field and the current density inside the foetus is established and the zones of maximum exposure are identified.


2019 ◽  
Vol 72 (5) ◽  
pp. 773-778
Author(s):  
Iryna V. Markovskaya

Introduction: Low intensity electromagnetic effects possess a high biological activity, reduce the adaptive reserves of the body, impair immunity, adversely affect the functional state of the organs and body systems. The aim of the study was to identify in the experiment the effect of low-frequency electromagnetic radiation on the morphological state of the dental and periodontal tissue. Materials and methods: The experiment was conducted on WAG rats weighing 180–200 g, during which two groups were formed: group 1 (control group) included 12 WAG rats, which were not performed any manipulations; the rats of group 2 (investigation group) (n=12) for 30 days were exposed to a 70 kHz low-frequency alternating electric field (5th frequency range) daily from 9.00 to 12.00. To simulate a low-frequency 70 kHz alternating electric field, certified experimental equipment was used. The study material was the upper jaw tissue. Histological and histochemical staining methods were used. Morphometric study was conducted. Results: Complex morphological study on the experimental material allowed identifying the damaging effect of low-frequency electromagnetic radiation on the structural components of tooth and periodontal tissues. Conclusions: Our findings suggest that the workers who are exposed to occupational low-frequency electromagnetic radiation should be included in the risk group for developing diseases of the dentomandibular system in order to carry out timely therapeutic and preventive measures.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Anna Šušnjara ◽  
Dragan Poljak

The paper deals with the deterministic-stochastic model of the human body represented as cylindrical antenna illuminated by a low frequency electric field. Both analytical and numerical (Galerkin-Bubnov scheme of Boundary Element Method) deterministic solutions of the problem are outlined. This contribution introduces the new perspective of the problem: the variability inherent to input parameters, such as the height of the body, the shape of the body, and the conductivity of body tissue, is propagated to the output of interest (induced axial current). The stochastic approach is based on the stochastic collocation (SC) method. Computational examples show the mean trend of both analytically and numerically computed axial current with the confidence margins for different set of input random variables. The results point out the possibility of improving the efficiency in calculation of basic restriction parameter values in electromagnetic dosimetry.


2021 ◽  
Vol 31 (4) ◽  
Author(s):  
Luong Lam Nguyen ◽  
Quoc Trung Trinh ◽  
Quang Bao Tu ◽  
Van Quynh Nguyen ◽  
Thi Hong Cam Hoang

This work reportson plasmonic effects (i.e light scattering and absorption properties) induced by two different gold nanoparticles (AuNPs)-shaped: spherical particle and triangular particle. The scattering cross-section and electric field profiles have been investigated by using theboundary element method (MNPBEM toolbox). Two configurations: the isolated AuNPand the coupledtwo-gold NPsystem have been considered to evaluate the localized surface plasmon resonance (LSPR) in eithersingle or coupled AuNPstructures. The effect of the surrounding medium on the scattering behavior of the NPs has also been examined. Then the dependence of “hotspot” intensity on the distance between two NPs has been recognized by mapping the electric field profile. The obtained results can be used as the guidelines for synthesizing AuNP structures to employ LSPR for sensing or other applications.


2020 ◽  
Vol E103.C (8) ◽  
pp. 345-352
Author(s):  
Zhongyuan ZHOU ◽  
Mingjie SHENG ◽  
Peng LI ◽  
Peng HU ◽  
Qi ZHOU

Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mauludi Manfaluthy

WHO (World Health Organization) concludes that not much effect is caused by electric field up to 20 kV / m in humans. WHO standard also mentions that humans will not be affected by the magnetic field under  100 micro tesla and that the electric field will affect the human body with a maximum standard of 5,000 volts per meter. In this study did not discuss about the effect of high voltage radiation SUTT (High Voltage Air Channel) with human health. The research will focus on energy utilization of SUTT radiation. The combination of electric field and magnetic field on SUTT (70-150KV) can generate electromagnetic (EM) and radiation waves, which are expected to be converted to turn on street lights around the location of high voltage areas or into other forms. The design of this prototype works like an antenna in general that captures electromagnetic signals and converts them into AC waves. With a capacitor that can store the potential energy of AC and Schottky diode waves created specifically for low frequency waves, make the current into one direction (DC). From the research results obtained the current generated from the radiation is very small even though the voltage is big enough.Keywords : Radiance Energy, Joule Thief, and  LED Module.


1972 ◽  
Vol 8 (4) ◽  
pp. 93 ◽  
Author(s):  
G.A. Swartz ◽  
A. Gonzalez ◽  
A. Dreeben

1983 ◽  
Vol 101 ◽  
pp. 499-501
Author(s):  
Gregory Benford ◽  
Attilio Ferrari ◽  
Silvano Massaglia

Canonical models for pulsars predict the emission of low–frequency waves of large amplitudes, produced by the rotation of a neutron star possessing a strong surface magnetic field. Pacini (1968) proposed this as the basic drain which yields to the pulsar slowing–down rate. The main relevance of the large amplitude wave (LAW) is the energetic link it provides between the pulsar and the surrounding medium. This role has been differently emphasized (Rees and Gunn, 1974; Ferrari, 1974), referring to absorption effects by relativistic particle acceleration and thermal heating, either close to the pulsar magnetosphere or in the nebula. It has been analyzed in the special case of the Crab Nebula, where observations are especially rich (Rees, 1971). As the Crab Nebula displays a cavity around the pulsar of dimension ∼1017cm, the function of the wave in sweeping dense gas away from the circumpulsar region is widely accepted. Absorption probably occurs at the inner edges of the nebula; i.e., where the wave pressure and the nebular pressure come into balance. Ferrari (1974) interpreted the wisps of the Crab Nebula as the region where plasma absorption occurs, damping the large amplitude wave and driving “parametric” plasma turbulence, thus trasferring energy to optical radiation powering the nebula. The mechanism has been extended to interpret the specific features of the “wisps” emission (Benford et al., 1978). Possibly the wave fills the nebula completely, permeating the space outside filaments with electromagnetic energy, continuously accelerating electrons for the extended radio and optical emission (Rees, 1971).


Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 672
Author(s):  
Bruce A. Young ◽  
Skye Greer ◽  
Michael Cramberg

In the viper boa (Candoia aspera), the cerebrospinal fluid (CSF) shows two stable overlapping patterns of pulsations: low-frequency (0.08 Hz) pulses with a mean amplitude of 4.1 mmHg that correspond to the ventilatory cycle, and higher-frequency (0.66 Hz) pulses with a mean amplitude of 1.2 mmHg that correspond to the cardiac cycle. Manual oscillations of anesthetized C. aspera induced propagating sinusoidal body waves. These waves resulted in a different pattern of CSF pulsations with frequencies corresponding to the displacement frequency of the body and with amplitudes greater than those of the cardiac or ventilatory cycles. After recovery from anesthesia, the snakes moved independently using lateral undulation and concertina locomotion. The episodes of lateral undulation produced similar influences on the CSF pressure as were observed during the manual oscillations, though the induced CSF pulsations were of lower amplitude during lateral undulation. No impact on the CSF was found while C. aspera was performing concertina locomotion. The relationship between the propagation of the body and the CSF pulsations suggests that the body movements produce an impulse on the spinal CSF.


2019 ◽  
Vol 28 (4) ◽  
pp. 045003 ◽  
Author(s):  
A Sobota ◽  
O Guaitella ◽  
G B Sretenović ◽  
V V Kovačević ◽  
E Slikboer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document