Improving the Energy Efficiency and Environmental Friendliness of a Combined Heat and Power Plant through the Use of Heat Absorption Transformers

Vestnik MEI ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 89-97
Author(s):  
Yuriy V. Yavorovsky ◽  
◽  
I′ldar A. Sultanguzin ◽  
Aleksey I. Bartenev ◽  
Stanislava A. Prishchepova ◽  
...  
Author(s):  
Vladimir Pavlovich Ermolaev ◽  
Ibragim Musaevich Abacharaev ◽  
Vladimir Grigorievich Bukin ◽  
Mikhail Nikolaevich Pokusaev

The article analyzes the changes in requirements for oxide emissions resulted from fuel combustion in accordance with the International Convention for the Prevention of Pollution from Ships MARPOL 73/78. The problem of improving the energy efficiency of large-capacity gas tankers is studied by using different types of marine fuel. An energy audit was carried out on board a gas carrier with deadweight of 54,354 tons and propulsion system power of 12,400 kW. The energy audit relied on data of six voyages of a gas-carrier from July 14, 2016 to January 19, 2017. The Energy Efficiency Operational Index defined as carbon dioxide emissions per ton-mile of cargo movement, was used as a tool for assessing the energy efficiency of the ship. The research included the methods of comparative analysis of fuel change during the voyages. The comparative analysis was applied to calculate changes of consuming fuels with different lower caloric value. There have been given general characteristics of heavy fuel RMG 380 and diesel fuel DMA. Values of all parameters for analysis of operational coefficient of power efficiency were taken from the engineer’s log, cargo record book and oil record book, as well as from energy efficiency operation indicator reports of the company after each voyage. Based on the results of the assessment, the conclusions were drawn and perspectives were developed concerning the use of marine fuels and modification of the ship power plant. It has been inferred that using liquefied natural gas as main fuel increases power and economic efficiency of a ship and meets new requirements of MARPOL 73/78 to 2020 on sulfur content in fuel. The conducted research and preliminary calculations make it possible to predict an increase in the economic efficiency of a large-tonnage fleet while maintaining a high environmental friendliness.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012012
Author(s):  
E K Arakelyan ◽  
A V Andryushin ◽  
S V Mezin ◽  
A A Kosoy

Abstract The features of the mathematical model of multi-criteria optimization of the distribution of current thermal and electrical loads at a combined heat and power plant with a mixed composition of equipment based on traditional heating units and a heating CCGT are considered. The previously proposed mathematical apparatus for solving the problem of multi-criteria optimization at a thermal power plant is analyzed. It is shown that with a mixed composition of equipment, along with the criteria of efficiency and environmental friendliness, it is also necessary to take into account the factors of reliability and mobility (maneuverability). The substantiation of the choice of reliability and mobility criteria for optimizing the operation modes of a thermal power plant is given. Approaches to solving the multi-criteria task are considered. The description of the features of the algorithm for solving the optimization problem is given in relation to thermal power plants with a mixed composition of equipment, including heating turbines of the T type and PGU.


2020 ◽  
Vol 178 ◽  
pp. 01010
Author(s):  
Yu. V. Yavorovsky ◽  
A. I. Bartenev ◽  
I. A. Sultanguzin ◽  
A Sh Alimgazin ◽  
S. A. Prishchepova ◽  
...  

In the present paper the scheme for increasing the energy efficiency of combined heat and power plants (CHPP) using absorption heat transformers (AHT) is considered. The aim of the study is to increase the energy and environmental efficiency of natural gas use in power supply systems by application steam turbine plants and absorption heat transformers. The simulation of CHPP modernization and a harmful emissions dispersion assessment were carried out using the following software tools: ISC Manager, Thermoflex. All the calculations were made for one power unit of the CHPP in Moscow. Subsequently, the obtained data on energy efficiency increase and harmful emissions reduction were multiplied on the whole power system of Moscow, the main source of heat and electricity of which are the CHPP’s of PJSC “Mosenergo”.


2018 ◽  
Vol 183 ◽  
pp. 143-152 ◽  
Author(s):  
Jaakko Karvonen ◽  
Janni Kunttu ◽  
Tommi Suominen ◽  
Jyrki Kangas ◽  
Pekka Leskinen ◽  
...  

Energy ◽  
2012 ◽  
Vol 45 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Tadeusz Chmielniak ◽  
Sebastian Lepszy ◽  
Katarzyna Wójcik

2021 ◽  
Vol 13 (4) ◽  
pp. 1935
Author(s):  
Vitantonio Colucci ◽  
Giampaolo Manfrida ◽  
Barbara Mendecka ◽  
Lorenzo Talluri ◽  
Claudio Zuffi

This study deals with the life cycle assessment (LCA) and an exergo-environmental analysis (EEvA) of the geothermal Power Plant of Hellisheiði (Iceland), a combined heat and power double flash plant, with an installed power of 303.3 MW for electricity and 133 MW for hot water. LCA approach is used to evaluate and analyse the environmental performance at the power plant global level. A more in-depth study is developed, at the power plant components level, through EEvA. The analysis employs existing published data with a realignment of the inventory to the latest data resource and compares the life cycle impacts of three methods (ILCD 2011 Midpoint, ReCiPe 2016 Midpoint-Endpoint, and CML-IA Baseline) for two different scenarios. In scenario 1, any emission abatement system is considered. In scenario 2, re-injection of CO2 and H2S is accounted for. The analysis identifies some major hot spots for the environmental power plant impacts, like acidification, particulate matter formation, ecosystem, and human toxicity, mainly caused by some specific sources. Finally, an exergo-environmental analysis allows indicating the wells as significant contributors of the environmental impact rate associated with the construction, Operation & Maintenance, and end of life stages and the HP condenser as the component with the highest environmental cost rate.


2019 ◽  
Vol 141 (05) ◽  
pp. 46-48
Author(s):  
Lee S. Langston

An updated report is given on the University of Connecticut’s gas turbine combined heat and power plant, now in operation for 13 years after its start in 2006. It has supplied the Storrs Campus with all of its electricity, heating and cooling needs, using three gas turbines that are the heart of the CHP plant. In addition to saving more than $180 million over its projected 40 year life, the CHP plant provides educational benefits for the University.


Sign in / Sign up

Export Citation Format

Share Document