An Introduction of Biomass Utilization Methods of JFE Environmental Solutions-Application of JFE-Babcock & Wilcox Vplund Biomass Gasification Technology Combined Heat and Power Plant to Paper Industry-

2007 ◽  
Vol 61 (9) ◽  
pp. 1079-1084
Author(s):  
Koji Omata ◽  
Kohei Nishimura
Vestnik MEI ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 89-97
Author(s):  
Yuriy V. Yavorovsky ◽  
◽  
I′ldar A. Sultanguzin ◽  
Aleksey I. Bartenev ◽  
Stanislava A. Prishchepova ◽  
...  

1985 ◽  
Vol 17 (1) ◽  
pp. 223-230 ◽  
Author(s):  
P K Latola

A wastewater from an integrated paper mill with a COD of 1200 mg/dm3 was anaerobically treated in a multi-stage reactor. The BOD7 removal efficiencies of 60-75 % were achieved at maximal loading rates of 5-6 kg COD/m3d and HRT of 4-6 hours due to the granular sludge. Industrial sulphite evaporator condensates from Ca- and Na-processes were treated in anaerobic filters containing light gravel, plastic foam and power plant slag as filter media. The BOD7 removals of 78 % on average were achieved at loading rates of 1.8-3.3 kg COD/m3d with Ca-process evaporator condensates and 80 % BOD7 removals were achieved with Na-process condensates at loading rates of 3.5-4.1 kg COD/m3d.


Energy ◽  
2012 ◽  
Vol 45 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Tadeusz Chmielniak ◽  
Sebastian Lepszy ◽  
Katarzyna Wójcik

2021 ◽  
Vol 13 (4) ◽  
pp. 1935
Author(s):  
Vitantonio Colucci ◽  
Giampaolo Manfrida ◽  
Barbara Mendecka ◽  
Lorenzo Talluri ◽  
Claudio Zuffi

This study deals with the life cycle assessment (LCA) and an exergo-environmental analysis (EEvA) of the geothermal Power Plant of Hellisheiði (Iceland), a combined heat and power double flash plant, with an installed power of 303.3 MW for electricity and 133 MW for hot water. LCA approach is used to evaluate and analyse the environmental performance at the power plant global level. A more in-depth study is developed, at the power plant components level, through EEvA. The analysis employs existing published data with a realignment of the inventory to the latest data resource and compares the life cycle impacts of three methods (ILCD 2011 Midpoint, ReCiPe 2016 Midpoint-Endpoint, and CML-IA Baseline) for two different scenarios. In scenario 1, any emission abatement system is considered. In scenario 2, re-injection of CO2 and H2S is accounted for. The analysis identifies some major hot spots for the environmental power plant impacts, like acidification, particulate matter formation, ecosystem, and human toxicity, mainly caused by some specific sources. Finally, an exergo-environmental analysis allows indicating the wells as significant contributors of the environmental impact rate associated with the construction, Operation & Maintenance, and end of life stages and the HP condenser as the component with the highest environmental cost rate.


2019 ◽  
Vol 141 (05) ◽  
pp. 46-48
Author(s):  
Lee S. Langston

An updated report is given on the University of Connecticut’s gas turbine combined heat and power plant, now in operation for 13 years after its start in 2006. It has supplied the Storrs Campus with all of its electricity, heating and cooling needs, using three gas turbines that are the heart of the CHP plant. In addition to saving more than $180 million over its projected 40 year life, the CHP plant provides educational benefits for the University.


Sign in / Sign up

Export Citation Format

Share Document