scholarly journals REDUCING THE LIKELIHOOD OF ELECTRICAL POWER-RELATED DISASTERS: A FUZZY MCDM APPROACH

2018 ◽  
Vol 9 (1) ◽  
pp. 679-686
Author(s):  
Eko Setiawan ◽  
Septin Puji Astuti ◽  
Handoko Handoko

Many of disasters are related to electrical power systems. They affect human life and economy. In order to reduce the negative impacts caused by the failure of electricity power system due to disasters and to create a robust electrical power system, selecting the best relay of electricity power is a must. This study identified the best protective relay of electrical power systems of PLN in Surakarta region by applying analytic hierarchy process (AHP), one of MCDM approaches, combined with fuzzy logic. Extent analysis approach was implemented to derive priorities of various criteria, sub-criteria and alternatives. Three relays being considered in the selection process are electromagnetic relay, digital relay and static relay. Four criteria in this study are techno-economy, fault frequency, protection of transmission line and advantage of relay over others. Meanwhile, five sub-criteria for each criterion are reliability, selectivity, sensitivity, working speed and efficient. Based on the criteria and sub-criteria, it can be inferred that in terms of four working areas of PLN management in Surakarta region, digital relay is seen as the best choice of relays.

Author(s):  
Amarjeet Singh

Problems associated with harmonic distortion are well understood for electrical power system applications.The right solution is challenging. There are numerous technologies to choose from, each with specific technical and economic advantages. This paper provides recommendations for reducing harmonic distortion, improving system capacity and improving system reliability. Special considerations for applying capacitors on a power systems with harmonics will be discussed.


2014 ◽  
Vol 875-877 ◽  
pp. 1822-1826 ◽  
Author(s):  
Bilel Neji ◽  
Chafaa Hamrouni ◽  
Adel M. Alimi ◽  
Hiroshi Nakajima

Despite the recent advances in space technologies, electrical power systems still are challenging researchers developing small satellites for low earth orbit use. In order to supply their subsystems, these satellites can only use the power stored on board from solar energy. Therefore, the electrical power system should ensure a maximum exploitation of energy sources and optimize the distribution of the available electrical power. In this context, Research Group of Intelligent Machines Laboratory in Tunisia developed a new intelligent electrical power subsystem to be used for pico satellites. This subsystem is based on fuzzy logic allowing a faster energy storage and better and efficient energy distribution. The intelligent electrical power subsystem was successfully integrated in ERPSat-1 pico satellite. In addition, the simulation has shown better results compared to other used methods in the previous electrical power systems used for small satellites.


Author(s):  
Gustavo Vinicius Duarte Barbosa ◽  
José Ronaldo Tavares Santos

Electrical power systems are susceptible to faults caused, for example, by storm, pollution, vandalism, lightning, salt spray, etc. The unscheduled interruption in the supply of electricity to consumers, whether industrial, residential, or commercial, entails severe fines for the transmission utility and/or electricity distributor, imposed by the regulatory agency. Thus, the EPS must have a well-dimensioned protection system, capable of identifying the fault, which is characterized by a single-phase, two-phase, three-phase short circuit, among others, and interrupt the missing section in the minimum time so that the effects of this lack are as small as possible for the SEP, especially with regard to its integrity and operational security.


Author(s):  
Jesus Gonzalez-Llorente Gonzalez-Llorente ◽  
Aleksander Andrzej Lidtke ◽  
Ronald Hurtado ◽  
Kei-Ichi Okuyama

Nowadays, it has become possible for universities and new businesses to launch satellites of reduced size and cost fulfilling viable missions. Nevertheless, there is still a considerable failure rate that reduces the expected lifetime of these spacecraft. One of the main causes of failure is the power system. Redundancy is one of the main options to enhance its lifetime and lower the failure rate. However, cost, mass, and complexity increase due to redundancy, making it more difficult to complete the projects. Thus, it is necessary to enhance the lifetime of power systems while keeping the development process simple and fast. This paper proposes two configurations of an electrical power system with duplicate components: single-bus configuration has been designed for a nanosatellite not yet launched and dual-bus configuration for a micro deep-space probe launched into a heliocentric orbit. The design and implementation of two dual electrical power systems are described; measurements and on-orbit data of the electrical power system of the micro deep-space probe are also presented, demonstrating that the dual-bus electrical power system can be successfully used in spacecraft. Lastly, conclusions regarding the redundancy considerations for small satellite electrical power systems are drawn based on these two examples.


Author(s):  
Fangyu Liu ◽  
Hongyan Dui ◽  
Ziyue Li

With the introduction of reliability engineering, electrical power system reliability has become an important basis for decision-making in the power industry. Two operation cases of electrical power systems are considered in this article. When the system is in an ordinary way, the influence between two system components will affect the importance measure of one component. When some component is in maintenance, preventive maintenance for working components and corrective maintenance for failed components can be executed simultaneously to enhance electrical power system performance. In view of the above two cases, two importance measures are proposed to effectively guide the preventive maintenance, aiming to improve the system performance within a limited budget. Reliability analysis procedure and methods applied toward the two importance measures are then developed and illustrated with the analysis on a Dual Element Spot Network system with double power supplies and double loads. Finally, a strategy for preventive maintenance is proposed by ranking the importance of these components.


Author(s):  
Diego A. Monroy-Ortiz ◽  
Sergio A. Dorado-Rojas ◽  
Eduardo Mojica-Nava ◽  
Sergio Rivera

Abstract This article presents a comparison between two different methods to perform model reduction of an Electrical Power System (EPS). The first is the well-known Kron Reduction Method (KRM) that is used to remove the interior nodes (also known as internal, passive, or load nodes) of an EPS. This method computes the Schur complement of the primitive admittance matrix of an EPS to obtain a reduced model that preserves the information of the system as seen from to the generation nodes. Since the primitive admittance matrix is equivalent to the Laplacian of a graph that represents the interconnections between the nodes of an EPS, this procedure is also significant from the perspective of graph theory. On the other hand, the second procedure based on Power Transfer Distribution Factors (PTDF) uses approximations of DC power flows to define regions to be reduced within the system. In this study, both techniques were applied to obtain reduced-order models of two test beds: a 14-node IEEE system and the Colombian power system (1116 buses), in order to test scalability. In analyzing the reduction of the test beds, the characteristics of each method were classified and compiled in order to know its advantages depending on the type of application. Finally, it was found that the PTDF technique is more robust in terms of the definition of power transfer in congestion zones, while the KRM method may be more accurate.


Author(s):  
B. Venkateswara Rao ◽  
Ramesh Devarapalli ◽  
H. Malik ◽  
Sravana Kumar Bali ◽  
Fausto Pedro García Márquez ◽  
...  

The trend of increasing demand creates a gap between generation and load in the field of electrical power systems. This is one of the significant problems for the science, where it require to add new generating units or use of novel automation technology for the better utilization of the existing generating units. The automation technology highly recommends the use of speedy and effective algorithms in optimal parameter adjustment for the system components. So newly developed nature inspired Bat Algorithm (BA) applied to discover the control parameters. In this scenario, this paper considers the minimization of real power generation cost with emission as an objective. Further, to improve the power system performance and reduction in the emission, two of the thermal plants were replaced with wind power plants. In addition, to boost the voltage profile, Static VAR Compensator (SVC) has been integrated. The proposed case study, i.e., considering wind plant and SVC with BA, is applied on the IEEE30 bus system. Due to the incorporation of wind plants into the system, the emission output is reduced, and with the application of SVC voltage profile improved.


2002 ◽  
Vol 12 (06) ◽  
pp. 1333-1356 ◽  
Author(s):  
YOSHISUKE UEDA ◽  
HIROYUKI AMANO ◽  
RALPH H. ABRAHAM ◽  
H. BRUCE STEWART

As part of an ongoing project on the stability of massively complex electrical power systems, we discuss the global geometric structure of contacts among the basins of attraction of a six-dimensional dynamical system. This system represents a simple model of an electrical power system involving three machines and an infinite bus. Apart from the possible occurrence of attractors representing pathological states, the contacts between the basins have a practical importance, from the point of view of the operation of a real electrical power system. With the aid of a global map of basins, one could hope to design an intervention strategy to boot the power system back into its normal state. Our method involves taking two-dimensional sections of the six-dimensional state space, and then determining the basins directly by numerical simulation from a dense grid of initial conditions. The relations among all the basins are given for a specific numerical example, that is, choosing particular values for the parameters in our model.


Author(s):  
Luis Ivan Ruiz Flores ◽  
J. Hugo Rodri´guez Marti´nez ◽  
Guillermo D. Taboada ◽  
Javier Pano Jimenez

Nowadays the refining sector in Mexico needs to increase the quantity and quality of produced fuels by installing new process plants for gasoline and ultra low sulphur diesel. These plants require the provision of electricity and steam, among other services to function properly, which can be supplied by the power plants currently installed in each refinery through an expansion of their generation capacity. These power plants need to increase its production of electricity and steam at levels above their installed capacity, which involves the addition of new power generating equipment (gas or steam turbo-generators) as well as the raise of the electrical loads. Currently, the Mexican Petroleum Company (PEMEX) is planning to restructure their electrical and steam systems in order to optimally supply the required services for the production of high quality fuels. In this paper the present status of the original electrical power systems of the refineries is assessed and the electrical integration of new process plants in the typical schemes is analyzed. Also this paper shows the conceptual schemes proposed to restructure the electrical power system for two refineries and the strategic planning focused on implement the modifications required for the integration of new process plants that will demand about 20 MW for each refinery by 2014. The results of the analysis allowed to identify the current conditions of the electrical power systems in the oil refining industry or National Refining Industry (NRI), and thereby to offer technical solutions that could be useful to engineers facing similar projects.


2022 ◽  
pp. 1361-1385
Author(s):  
Amam Hossain Bagdadee ◽  
Li Zhang

The review this article conducts is an extensive analysis of the concept of a smart grid framework with the most sophisticated smart grid innovation and some basic information about smart grid soundness. Smart grids as a new scheme for energy and a future generation framework encourages the expansion of information and progress. The smart grid framework concord will potentially take years. In this article, the focus is on developing smart networks within the framework of electric power systems.


Sign in / Sign up

Export Citation Format

Share Document