scholarly journals Influence of magnesium gluconate salt addition on mixing, pasting and fermentation properties of dough

2017 ◽  
Vol 1 (3) ◽  
pp. 222-225 ◽  
Author(s):  
Georgiana Gabriela Codină ◽  
Dumitru Zaharia ◽  
Sorina Ropciuc ◽  
Adriana Dabija

Abstract The effect of magnesium ions from gluconate salt at the level of 100, 150 and 200 mg/100g addition on empirical dough rheological properties from the 550 wheat flour type was studied. Dough rheological properties during mixing (dough development time, dough stability, degree of softening), α amylase activity and gelatinization temperature were analyzed by using a Falling Number and Amylograph. During fermentation were analyzed the maximum height of gaseous production, total CO2 volume production, volume of the gas retained in the dough at the end of the test and the retention coefficient by using a Rheofermentograph device. By magnesium gluconate (Mg) salt addittion dough become more strength by an increase of stability and a decrease of the degree of softening. With Mg addittion wheat flour dough volumes were affected. Compared to the control sample, the dough volume decreased with the increased level of Mg. From the point of view of the α amylase activity, it decreases with the increase level of Mg whereas the gelatinization temperature increases.

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2588
Author(s):  
Denisa Atudorei ◽  
Mădălina Ungureanu-Iuga ◽  
Georgiana Gabriela Codină ◽  
Silvia Mironeasa

Improving the alpha-amylase activity of wheat flour represents an opportunity to valorize wheat grains of low baking quality. In this sense, germinated legumes can be used to increase enzymatic activity, giving superior final product characteristics at the same time. The aim of this study was to underline the effects of chickpea (CGF) and lupin germinated flours (LGF) added simultaneously to white wheat flour on the rheological behavior of dough and to evaluate an optimal product microstructure. For this purpose, the falling number, dough rheological properties during mixing, 3D-deformation and fermentation, and the visco-elastic behavior were evaluated, the effects of factors (CGF and LGF levels) and their optimization have been studied by applying a full factorial design and response surface methodology (RSM). The LGF sample had a composition of 39.4% protein, 10.3% moisture, 6.9% fat, and 3.4% ash, whereas the CGF presented 21.1 % protein, 9.4% moisture, 5.2% fat, and 3.6% ash. The results showed that CGF and LGF determined the decrease of the falling number, dough water absorption, tolerance to kneading, dough consistency at 250 and 450 s, extensibility, the maximum height of the gas release curve, volume of gas retained by the dough at the end of the test, total volume of CO2 production, visco-elastic moduli, and gelatinization temperatures. On the other hand, dough elasticity and alveograph curve ratio increased proportionally to the increase of CGF and LGF addition levels. The optimal combination considering the rheological properties of dough was found to be 8.57% CGF, 5.31% LGF, and 86.12% wheat flour, with enhanced alpha-amylase activity being obtained compared to the control. These results provide valuable information on the possibility of using germinated legumes such as chickpeas and lupin in breadmaking to enhance wheat flour technological properties (besides traditionally used barley malt flour).


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3969
Author(s):  
Karolina Pycia ◽  
Lesław Juszczak

The aim of the study was to assess the influence of replacing wheat flour with hazelnuts or walnuts, in various amounts, on the thermal and rheological properties of the obtained systems. The research material were systems in which wheat flour was replaced with ground hazelnuts (H) or walnuts (W) in the amount of 5%, 10%, and 15%. The parameters of the thermodynamic gelatinization characteristics were determined by the differential scanning calorimetry method. In addition, the pasting characteristics were determined with the use of a viscosity analyzer and the viscoelastic properties were assessed. Sweep frequency and creep and recovery tests were used to assess the viscoelastic properties of the tested gels. It was found that replacing wheat flour with nuts increased the values of gelatinization temperature, gelatinization, and retrogradation enthalpy, and the degree of retrogradation. The highest viscosity was characteristic of the control sample (2039 mPa·s), and the lowest for the paste with 15% addition of walnuts (1120 mPa·s). Replacing the flour with nuts resulted in a very visible reduction in the viscosity of such systems. In addition, gels based on the systems with the addition of H and W were weak gels (tan δ = G″/G′ > 0.1), and the values of G′ and G″ parameters decreased with the increased share of nuts in the systems. Creep and recovery analysis indicated that the systems in which wheat flour was replaced with hazelnuts were less susceptible to deformation compared to the systems with the addition of W.


2017 ◽  
Vol 54 (6) ◽  
pp. 1597-1607 ◽  
Author(s):  
Xingli Liu ◽  
Taihua Mu ◽  
Karim Diego Yamul ◽  
Hongnan Sun ◽  
Miao Zhang ◽  
...  

2018 ◽  
Vol 43 (6) ◽  
pp. e13857 ◽  
Author(s):  
Georgiana Gabriela Codină ◽  
Adriana Dabija ◽  
Silviu Gabriel Stroe ◽  
Sorina Ropciuc

2018 ◽  
Vol 25 (2) ◽  
pp. 130-140 ◽  
Author(s):  
Jovana Petrović ◽  
Biljana Pajin ◽  
Ivana Lončarević ◽  
Vesna Tumbas Šaponjac ◽  
Ivana Nikolić ◽  
...  

In this study, the effect of encapsulated sour cherry pomace extract on the physical characteristics of the cookie dough (colour, textural and rheological properties) was investigated. Sour cherry pomace extract encapsulated in whey (WE) and soy proteins (SE) was incorporated in cookie dough, replacing 10% (WE10 and SE10) and 15% (WE15 and SE15) of wheat flour. The dough samples containing encapsulates had the grey-blue colour ( b* values significantly decreased compared to control sample). Due to the presence of anthocyanins, a* values of the dough colour increased significantly with the addition of encapsulates. The addition of soy protein encapsulate increased hardness, resistance to extension and viscosity of cookie dough and decreased deformation compliance ( J), while the addition of whey encapsulate caused dough softness, higher deformation compliance and lower values of viscosity compared to control sample. Values of storage and loss modulus, G′ and G″, significantly decreased when wheat flour was replaced with WE and increased when the flour was replaced with soy protein encapsulate. The addition of soy protein encapsulate resulted in higher cookie hardness.


Author(s):  
О.Л. ВЕРШИНИНА ◽  
А.Н. БОНДАРЕНКО ◽  
Е.А. ЗЕРНАЕВА

Представлены результаты исследования влияния компонентов мучной композитной смеси – муки люпиновой, кукурузной и ячменной на автолитическую активность и углеводно-амилазный комплекс пшеничной муки 1-го сорта. Для определения автолитической активности по числу падения (ЧП) образцов муки с добавками и без них добавки вносили в количестве 5, 15, 25, 35%. Установлено, что при внесении 5% ячменной и кукурузной муки автолитическая активность существенно не меняется, при увеличении количества добавки показатель ЧП муки увеличивается от 3 до 14% и автолитическая активность снижается. Величины показателей газообразующей и водопоглотительной способности мучных композитных смесей возрастают по сравнению с аналогичными показателями контрольного образца – пшеничной мукой 1-го сорта без добавок. Рекомендовано использовать разработанную мучную композитную смесь, содержащую 65% пшеничной муки, 25% люпиновой муки, 5% кукурузной муки, 5% ячменной муки, при производстве пшеничных сортов хлеба для улучшения реологических свойств теста и, следовательно, качества хлеба. Results of investigation of influence of components of flour composite mixtures – lupine, cornmeal and barley flour on autolytic activity and carbohydrate-amylase complex of wheat flour of 1st grade are presented. To determine the autolytic activity by of falling number (FN) flour samples with additives and without them additives were brought in the amount of 5, 15, 25, 35%. It is established that with the introduction of 5% barley flour and cornmeal autolytic activity does not change significantly, with an increase in the number of additives, the index of FN flour increases from 3 to 14% and autolytic activity decreases. Values of indicators of gas-forming and water-absorbing ability of flour composite mixtures increase in comparison with similar indicators of a control sample – wheat flour of 1st grade without additives. It is recommended to use the developed flour composite mixture containing 65% wheat flour, 25% lupine flour, 5% cornmeal, 5% barley flour in the production of wheat breads to improve the rheological properties of the dough and, therefore, the quality of bread.


2021 ◽  
Vol 11 (24) ◽  
pp. 11706
Author(s):  
Mădălina Ungureanu-Iuga ◽  
Denisa Atudorei ◽  
Georgiana Gabriela Codină ◽  
Silvia Mironeasa

Germination is a convenient technique that could be used to enhance the nutritional profile of legumes. Furthermore, consumers’ increasing demand for diversification of bakery products represents an opportunity to use such germinated flours in wheat-based products. Thus, this study aimed to underline the effects of soybean germinated flour (SGF) and lentil germinated flour (LGF) on the rheological behavior of dough during different processing stages and to optimize the addition level. For this purpose, flour falling number, dough properties during mixing, extension, fermentation, and dynamic rheological characteristics were evaluated. Response surface methodology (RSM) was used for the optimization of SGF and LGF addition levels in wheat flour, optimal and control samples microstructures being also investigated through epifluorescence light microscopy (EFLM). The results revealed that increased SGF and LGF addition levels led to curve configuration ratio, visco-elastic moduli, and maximum gelatinization temperature rises, while the falling number, water absorption, dough extensibility, and baking strength decreased. The interaction between SGF and LGF significantly influenced (p < 0.05) the falling number, dough consistency after 450 s, baking strength, curve configuration ratio, viscous modulus, and maximum gelatinization temperature. The optimal sample was found to contain 5.60% SGF and 3.62% LGF added in wheat flour, with a significantly lower falling number, water absorption, tolerance to kneading, dough consistency, extensibility, and initial gelatinization temperature being observed, while dough tenacity, the maximum height of gaseous production, total CO2 volume production, the volume of the gas retained in the dough at the end of the test, visco-elastic moduli and maximum gelatinization temperatures were higher compared to the control. These results underlined the effects of SGF and LGF on wheat dough rheological properties and could be helpful for novel bakery products development.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ramiro Torres-Gallo ◽  
Ricardo Durán ◽  
José García-Camargo ◽  
Oswaldo Morales ◽  
Diofanor Acevedo ◽  
...  

Wheat is one of the most widely used cereals in the world. However, studies consider wheat flour doughs to be of low nutritional quality, as there is now greater public awareness of celiac disease and gluten intolerance. Therefore, consumers are demanding healthier and more varied food products. Consequently, wheat flour is being replaced fully or partially by flours from other sources with higher quality. Hence, the main objective of this work was to report the effect of blending wheat flour with ackee aril flour, until the total replacement of wheat flour, on pasting and dough rheological properties. Five different levels of blending were analyzed: wheat to ackee aril flour mass ratios of 100 : 0, 75 : 25, 50 : 50, 25 : 75, and 0 : 100. Pasting properties (pasting temperature, peak viscosity, ease of cooking, swelling power, final viscosity at 50  °C, and thixotropy) were analyzed; and steady-state shear measurements were used to obtain consistency coefficients ( K ) and flow behavior indexes ( n ) after data was fitted to the Power Law and Herschel-Bulkley models. The gradual addition of the ackee aril flour fraction produced an increase in ash, fat, protein, and fiber content; while water and carbohydrate content showed the opposite behavior in the obtained composite flour. Consequently, the partial or full replacement of wheat flour changed the rheological properties of the produced doughs, as well as the quality of the final product. These changes were mostly related to the protein and carbohydrate content of the ackee aril flour fraction. In general, doughs showed a pseudoplastic behavior with thixotropy whose viscosity decreased as the addition of ackee aril flour was increased. Pasting properties of blends involving 25 %-75 % ackee aril flour demonstrate the feasibility of including these flours in products subjected to high processing temperatures such as canned products or even to produce chips and pasta.


2011 ◽  
Vol 34 (2) ◽  
pp. 1327-1331 ◽  
Author(s):  
L. Garófalo ◽  
D. Vazquez ◽  
F. Ferreira ◽  
S. Soule

Sign in / Sign up

Export Citation Format

Share Document